Jing Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6683895/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Advances in characterisation and biological activities of chitosan and chitosan oligosaccharides. Food Chemistry, 2016, 190, 1174-1181.	4.2	360
2	An Overview on the Mechanisms and Applications of Enzyme Inhibition-Based Methods for Determination of Organophosphate and Carbamate Pesticides. Journal of Agricultural and Food Chemistry, 2020, 68, 7298-7315.	2.4	102
3	Recent advances in metal-organic frameworks/membranes for adsorption and removal of metal ions. TrAC - Trends in Analytical Chemistry, 2021, 137, 116226.	5.8	61
4	Selective recognition and fast enrichment of anthocyanins by dummy molecularly imprinted magnetic nanoparticles. Journal of Chromatography A, 2018, 1572, 9-19.	1.8	55
5	Strategy of Fusion Covalent Organic Frameworks and Molecularly Imprinted Polymers: A Surprising Effect in Recognition and Loading of Cyanidin-3- <i>O</i> -glucoside. ACS Applied Materials & Interfaces, 2020, 12, 8751-8760.	4.0	51
6	Competitive Bio-Barcode Immunoassay for Highly Sensitive Detection of Parathion Based on Bimetallic Nanozyme Catalysis. Journal of Agricultural and Food Chemistry, 2020, 68, 660-668.	2.4	45
7	The impact of chitooligosaccharides and their derivatives on the in vitro and in vivo antitumor activity: A comprehensive review. Carbohydrate Polymers, 2021, 266, 118132.	5.1	45
8	Phthalate esters in bottled drinking water and their human exposure in Beijing, China. Food Additives and Contaminants: Part B Surveillance, 2019, 12, 1-9.	1.3	43
9	A simple and sensitive competitive bio-barcode immunoassay for triazophos based on multi-modified gold nanoparticles and fluorescent signal amplification. Analytica Chimica Acta, 2018, 999, 123-131.	2.6	42
10	A Competitive Bio-Barcode Amplification Immunoassay for Small Molecules Based on Nanoparticles. Scientific Reports, 2016, 6, 38114.	1.6	41
11	Chitosan oligosaccharides with degree of polymerization 2–6 induces apoptosis in human colon carcinoma HCT116 cells. Chemico-Biological Interactions, 2018, 279, 129-135.	1.7	35
12	Simple and Multifunctional Natural Self-Assembled Sterols with Anticancer Activity-Mediated Supramolecular Photosensitizers for Enhanced Antitumor Photodynamic Therapy. ACS Applied Materials & Interfaces, 2019, 11, 29498-29511.	4.0	35
13	Chitosan Oligosaccharides Induce Apoptosis in Human Renal Carcinoma via Reactive-Oxygen-Species-Dependent Endoplasmic Reticulum Stress. Journal of Agricultural and Food Chemistry, 2019, 67, 1691-1701.	2.4	35
14	Natural product gelators and a general method for obtaining them from organisms. Nanoscale, 2018, 10, 3639-3643.	2.8	34
15	Carbon dots based fluorescence methods for the detections of pesticides and veterinary drugs: Response mechanism, selectivity improvement and application. TrAC - Trends in Analytical Chemistry, 2021, 144, 116430.	5.8	33
16	Enzyme inhibition methods based on Au nanomaterials for rapid detection of organophosphorus pesticides in agricultural and environmental samples: A review. Journal of Advanced Research, 2022, 37, 61-74.	4.4	32
17	Highly sensitive detection of triazophos pesticide using a novel bio-bar-code amplification competitive immunoassay in a micro well plate-based platform. Sensors and Actuators B: Chemical, 2018, 256, 457-464.	4.0	31
18	Colorimetric bio-barcode immunoassay for parathion based on amplification by using platinum nanoparticles acting as a nanozyme. Mikrochimica Acta, 2019, 186, 339.	2.5	30

JING WANG

#	Article	IF	CITATIONS
19	Rapid Determination of Chlormequat in Meat by Dispersive Solid-Phase Extraction and Hydrophilic Interaction Liquid Chromatography (HILIC)–Electrospray Tandem Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2012, 60, 6816-6822.	2.4	29
20	Novel Fe3O4@metal-organic framework@polymer core-shell-shell nanospheres for fast extraction and specific preconcentration of nine organophosphorus pesticides from complex matrices. Food Chemistry, 2021, 365, 130485.	4.2	29
21	A sensitive chemiluminescence enzyme immunoassay based on molecularly imprinted polymers solid-phase extraction of parathion. Analytical Biochemistry, 2017, 530, 87-93.	1.1	28
22	Fast determination of alkylphenol ethoxylates in leafy vegetables using a modified quick, easy, cheap, effective, rugged, and safe method and ultra-high performance supercritical fluid chromatography–tandem mass spectrometry. Journal of Chromatography A, 2017, 1525, 161-172.	1.8	28
23	A sensitive bio-barcode immunoassay based on bimetallic Au@Pt nanozyme for detection of organophosphate pesticides in various agro-products. Food Chemistry, 2021, 362, 130118.	4.2	27
24	Antitumor Effects of Orally and Intraperitoneally Administered Chitosan Oligosaccharides (COSs) on S180â€Bearing/Residual Mouse. Journal of Food Science, 2016, 81, H3035-H3042.	1.5	26
25	Competitive colorimetric triazophos immunoassay employing magnetic microspheres and multi-labeled gold nanoparticles along with enzymatic signal enhancement. Mikrochimica Acta, 2017, 184, 3705-3712.	2.5	26
26	Enhanced Competitive Chemiluminescent Enzyme Immunoassay for the Trace Detection of Insecticide Triazophos. Journal of Food Science, 2012, 77, T99-T104.	1.5	24
27	Simultaneous Determination of Eight Monoalkyl Phthalate Esters in Porcine Tissue by Solid-Phase Extraction and Liquid Chromatography–Tandem Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2019, 67, 7167-7173.	2.4	23
28	Rapid colorimetric determination of the pesticides carbofuran and dichlorvos by exploiting their inhibitory effect on the aggregation of peroxidase-mimicking platinum nanoparticles. Mikrochimica Acta, 2019, 186, 390.	2.5	22
29	Determination of hymexazol in 26 foods of plant origin by modified QuEChERS method and liquid chromatography tandem-mass spectrometry. Food Chemistry, 2017, 228, 411-419.	4.2	20
30	A "half―core-shell magnetic nanohybrid composed of zeolitic imidazolate framework and graphitic carbon nitride for magnetic solid-phase extraction of sulfonylurea herbicides from water samples followed by LC-MS/MS detection. Mikrochimica Acta, 2020, 187, 279.	2.5	19
31	Protective Effect of Chitosan Oligosaccharides Against Cyclophosphamideâ€Induced Immunosuppression and Irradiation Injury in Mice. Journal of Food Science, 2018, 83, 535-542.	1.5	18
32	Preparation of molecularly imprinted polymer with class-specific recognition for determination of 29 sulfonylurea herbicides in agro-products. Journal of Chromatography A, 2021, 1647, 462143.	1.8	17
33	Enhancing the Sensitivity of the Bio-barcode Immunoassay for Triazophos Detection Based on Nanoparticles and Droplet Digital Polymerase Chain Reaction. Journal of Agricultural and Food Chemistry, 2019, 67, 12936-12944.	2.4	16
34	Growth-inhibition of S180 residual-tumor by combination of cyclophosphamide and chitosan oligosaccharides in vivo. Life Sciences, 2018, 202, 21-27.	2.0	14
35	Rapid analysis of tristyrylphenol ethoxylates in cucumber-field system using supercritical fluid chromatography–tandem mass spectrometry. Food Chemistry, 2018, 266, 119-125.	4.2	13
36	Occurrences of the Typical Agricultural Non-ionic Surfactants Tristyrylphenol Ethoxylates in Cherries (<i>Cerasus pseudocerasus</i>), Peaches (<i>Amygdalus persica</i>), and Kiwifruit (<i>Actinidia chinensis</i>) and the Implications of Human Exposure in China. Journal of Agricultural and Food Chemistry, 2019, 67, 2999-3005.	2.4	12

JING WANG

#	ARTICLE	IF	CITATIONS
37	Occurrence and Distribution of Phthalate Esters and Their Major Metabolites in Porcine Tissues. Journal of Agricultural and Food Chemistry, 2020, 68, 6910-6918.	2.4	12
38	A sensitive fluorometric bio-barcodes immunoassay for detection of triazophos residue in agricultural products and water samples by iterative cycles of DNA-RNA hybridization and dissociation of fluorophores by Ribonuclease H. Science of the Total Environment, 2020, 717, 137268.	3.9	12
39	Dissipation and dietary risk assessment of tristyrylphenol ethoxylate homologues in cucumber after field application. Food Chemistry, 2021, 338, 127988.	4.2	12
40	Acetylcholinesterase Immobilized on Magnetic Mesoporous Silica Nanoparticles Coupled with Fluorescence Analysis for Rapid Detection of Carbamate Pesticides. ACS Applied Nano Materials, 2022, 5, 1327-1338.	2.4	12
41	A visual bio-barcode immunoassay for sensitive detection of triazophos based on biochip silver staining signal amplification. Food Chemistry, 2021, 347, 129024.	4.2	11
42	Dissipation and risk assessment of forchlorfenuron and its major metabolites in oriental melon under greenhouse cultivation. Ecotoxicology and Environmental Safety, 2021, 225, 112700.	2.9	9
43	A competitive immunoassay for detecting triazophos based on fluorescent catalytic hairpin self-assembly. Mikrochimica Acta, 2022, 189, 114.	2.5	9
44	Green Synthesis of Tannin-Polyethylenimine Adsorbent for Removal of Cu(II) from Aqueous Solution. Journal of Chemical & Engineering Data, 2020, 65, 5593-5605.	1.0	8
45	Tracking Changes of Hexabromocyclododecanes during the Refining Process in Peanut, Corn, and Soybean Oils. Journal of Agricultural and Food Chemistry, 2017, 65, 9880-9886.	2.4	7
46	A highly sensitive bio-barcode immunoassay for multi-residue detection of organophosphate pesticides based on fluorescence anti-quenching. Journal of Pharmaceutical Analysis, 2022, 12, 637-644.	2.4	7
47	Dissipation Profiles of Tristyrylphenol Ethoxylate Homologs in Lettuce under Greenhouse and Field Conditions. Journal of Agricultural and Food Chemistry, 2020, 68, 1507-1513.	2.4	5
48	Recognition elements based on the molecular biological techniques for detecting pesticides in food: A review. Critical Reviews in Food Science and Nutrition, 2023, 63, 4942-4965.	5.4	4
49	A Competitive Assay Based on Dual-Mode Au@Pt-DNA Biosensors for On-Site Sensitive Determination of Carbendazim Fungicide in Agricultural Products. Frontiers in Nutrition, 2022, 9, 820150.	1.6	3
50	Enhanced Bio-Barcode Immunoassay Using Droplet Digital PCR for Multiplex Detection of Organophosphate Pesticides. Journal of Agricultural and Food Chemistry, 2021, 69, 11131-11141.	2.4	2
51	Recent progress in organic–inorganic hybrid materials as absorbents in sample pretreatment for pesticide detection. Critical Reviews in Food Science and Nutrition, 2023, 63, 10880-10898.	5.4	0