
Mutsutomo Tokizawa, æ, #3/4¤ç 末

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6683835/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	SENSITIVE TO PROTON RHIZOTOXICITY1, CALMODULIN BINDING TRANSCRIPTION ACTIVATOR2, and Other Transcription Factors Are Involved in <i>ALUMINUM-ACTIVATED MALATE TRANSPORTER1</i> Expression Â. Plant Physiology, 2015, 167, 991-1003.	4.8	129
2	Identifying the target genes of <scp>SUPPRESSOR OF GAMMA RESPONSE</scp> 1, a master transcription factor controlling <scp>DNA</scp> damage response in <i>Arabidopsis</i> . Plant Journal, 2018, 94, 439-453.	5.7	127
3	Light Controls Protein Localization through Phytochrome-Mediated Alternative Promoter Selection. Cell, 2017, 171, 1316-1325.e12.	28.9	99
4	High REDOX RESPONSIVE TRANSCRIPTION FACTOR1 Levels Result in Accumulation of Reactive Oxygen Species in Arabidopsis thaliana Shoots and Roots. Molecular Plant, 2015, 8, 1253-1273.	8.3	91
5	Transcriptional Regulation of Aluminum-Tolerance Genes in Higher Plants: Clarifying the Underlying Molecular Mechanisms. Frontiers in Plant Science, 2017, 8, 1358.	3.6	67
6	ppdb: plant promoter database version 3.0. Nucleic Acids Research, 2014, 42, D1188-D1192.	14.5	61
7	The Responses of Arabidopsis <i>Early Light-Induced Protein2</i> to Ultraviolet B, High Light, and Cold Stress Are Regulated by a Transcriptional Regulatory Unit Composed of Two Elements. Plant Physiology, 2015, 169, 840-855.	4.8	54
8	Prediction of transcriptional regulatory elements for plant hormone responses based on microarray data. BMC Plant Biology, 2011, 11, 39.	3.6	41
9	Suppression of MYC transcription activators by the immune cofactor NPR1 fine-tunes plant immune responses. Cell Reports, 2021, 37, 110125.	6.4	41
10	Characterization of CcSTOP1; a C2H2-type transcription factor regulates Al tolerance gene in pigeonpea. Planta, 2018, 247, 201-214.	3.2	40
11	VuDREB2A, a novel DREB2-type transcription factor in the drought-tolerant legume cowpea, mediates DRE-dependent expression of stress-responsive genes and confers enhanced drought resistance in transgenic Arabidopsis. Planta, 2014, 240, 645-664.	3.2	34
12	STOP1 regulates the expression of HsfA2 and GDHs that are critical for low-oxygen tolerance in Arabidopsis. Journal of Experimental Botany, 2019, 70, 3297-3311.	4.8	31
13	High affinity promoter binding of STOP1 is essential for early expression of novel aluminum-induced resistance genes <i>GDH1</i> and <i>GDH2</i> in Arabidopsis. Journal of Experimental Botany, 2021, 72, 2769-2789.	4.8	28
14	Identification of Arabidopsis genic and nonâ€genic promoters by pairedâ€end sequencing of <scp>TSS</scp> tags. Plant Journal, 2017, 90, 587-605.	5.7	26
15	Involvement of phosphatidylinositol metabolism in aluminum-induced malate secretion in Arabidopsis. Journal of Experimental Botany, 2019, 70, 3329-3342.	4.8	25
16	Root Adaptation via Common Genetic Factors Conditioning Tolerance to Multiple Stresses for Crops Cultivated on Acidic Tropical Soils. Frontiers in Plant Science, 2020, 11, 565339.	3.6	19
17	A singleâ€population GWAS identified <i>AtMATE</i> expression level polymorphism caused by promoter variants is associated with variation in aluminum tolerance in a local <i>Arabidopsis</i> population. Plant Direct, 2020, 4, e00250.	1.9	14
18	Prediction of bipartite transcriptional regulatory elements using transcriptome data of Arabidopsis. DNA Research, 2017, 24, 271-278.	3.4	3