
Chrysanthy Ikonomidou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6683557/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of Soy-Based Infant Formula on Weight Gain and Neurodevelopment in an Autism Mouse Model. Cells, 2022, 11, 1350.	1.8	6
2	Brain pathology caused in the neonatal macaque by short and prolonged exposures to anticonvulsant drugs. Neurobiology of Disease, 2021, 149, 105245.	2.1	11
3	Cerebrospinal Fluid Biomarkers in Childhood Leukemias. Cancers, 2021, 13, 438.	1.7	4
4	lsobaric Labeling Strategy Utilizing 4-Plex <i>N</i> , <i>N</i> -Dimethyl Leucine (DiLeu) Tags Reveals Proteomic Changes Induced by Chemotherapy in Cerebrospinal Fluid of Children with B-Cell Acute Lymphoblastic Leukemia. Journal of Proteome Research, 2020, 19, 2606-2616.	1.8	7
5	Optimization of Ultrasound Backscatter Spectroscopy to Assess Neurotoxic Effects of Anesthesia in the Newborn Non-human Primate Brain. Ultrasound in Medicine and Biology, 2020, 46, 2044-2056.	0.7	2
6	Mild hypothermia ameliorates anesthesia toxicity in the neonatal macaque brain. Neurobiology of Disease, 2019, 130, 104489.	2.1	19
7	Quantitative ultrasound and apoptotic death in the neonatal primate brain. Neurobiology of Disease, 2019, 127, 554-562.	2.1	9
8	Caffeine Augments Anesthesia Neurotoxicity in the Fetal Macaque Brain. Scientific Reports, 2018, 8, 5302.	1.6	11
9	Case 1: Term Infant with Intractable Seizures and Bilateral Hydronephrosis. NeoReviews, 2018, 19, e297-e300.	0.4	0
10	Clemastine effects in rat models of a myelination disorder. Pediatric Research, 2018, 83, 1200-1206.	1.1	11
11	Non-functionalized soft alginate hydrogel promotes locomotor recovery after spinal cord injury in a rat hemimyelonectomy model. Acta Neurochirurgica, 2018, 160, 449-457.	0.9	29
12	Coherent Ultrasound Scattering in the Young Rhesus Macaque Brain: Effects of Exposure to Anesthetics. , 2018, , .		0
13	Chemotherapy and the pediatric brain. Molecular and Cellular Pediatrics, 2018, 5, 8.	1.0	35
14	Autoimmune Ataxia During Maintenance Therapy for Acute Lymphoblastic Leukemia. Child Neurology Open, 2018, 5, 2329048X1881923.	0.5	1
15	AMPA Receptor Antagonist CFM-2 Decreases Survivin Expression in Cancer Cells. Anti-Cancer Agents in Medicinal Chemistry, 2018, 18, 591-596.	0.9	6
16	Riluzole Inhibits Proliferation, Migration and Cell Cycle Progression and Induces Apoptosis in Tumor Cells of Various Origins. Anti-Cancer Agents in Medicinal Chemistry, 2018, 18, 565-572.	0.9	21
17	Extended Multiple-Field High-Definition transcranial direct current stimulation (HD-tDCS) is well tolerated and safe in healthy adults. Restorative Neurology and Neuroscience, 2017, 35, 631-642.	0.4	25
18	Role of microglia in a mouse model of paediatric traumatic brain injury. Brain, Behavior, and Immunity, 2017, 63, 197-209.	2.0	64

#	Article	IF	CITATIONS
19	Top-Down Proteomics with Mass Spectrometry Imaging: A Pilot Study towards Discovery of Biomarkers for Neurodevelopmental Disorders. PLoS ONE, 2014, 9, e92831.	1.1	37
20	Matrix metalloproteinases and epileptogenesis. Molecular and Cellular Pediatrics, 2014, 1, 6.	1.0	24
21	Glutamate as a Neurotoxin. , 2014, , 365-397.		2
22	Impact of Chemotherapy for Childhood Leukemia on Brain Morphology and Function. PLoS ONE, 2013, 8, e78599.	1.1	63
23	Neuropathological Sequelae of Developmental Exposure to Antiepileptic and Anesthetic Drugs. Frontiers in Neurology, 2012, 3, 120.	1.1	29
24	Neuronal Death and Oxidative Stress in the Developing Brain. Antioxidants and Redox Signaling, 2011, 14, 1535-1550.	2.5	207
25	Levetiracetam: Safety and efficacy in neonatal seizures. European Journal of Paediatric Neurology, 2011, 15, 1-7.	0.7	121
26	Internalisation of engineered nanoparticles into mammalian cells in vitro: influence of cell type and particle properties. Journal of Nanoparticle Research, 2011, 13, 293-310.	0.8	55
27	Triggers of Cell Death in the Developing Brain. Current Pediatric Reviews, 2011, 7, 293-300.	0.4	2
28	Antiepileptic drugs and brain development. Epilepsy Research, 2010, 88, 11-22.	0.8	129
29	Prenatal Effects of Antiepileptic Drugs. Epilepsy Currents, 2010, 10, 42-46.	0.4	9
30	Triggers of apoptosis in the immature brain. Brain and Development, 2009, 31, 488-492.	0.6	64
31	Neurodegeneration in Newborn Rats Following Propofol and Sevoflurane Anesthesia. Neurotoxicity Research, 2009, 16, 140-147.	1.3	111
32	Neurodegeneration and neuroprotection in the epileptic brain. Annals of General Psychiatry, 2008, 7, .	1.2	0
33	Accumulation of the anandamide precursor and other N-acylethanolamine phospholipids in infant rat models of in vivo necrotic and apoptotic neuronal death. Journal of Neurochemistry, 2008, 76, 39-46.	2.1	89
34	Cannabinoids enhance susceptibility of immature brain to ethanol neurotoxicity. Annals of Neurology, 2008, 64, 42-52.	2.8	73
35	Sedative and anticonvulsant drugs suppress postnatal neurogenesis. Annals of Neurology, 2008, 64, 434-445.	2.8	157
36	Synaptic NMDA receptor activity boosts intrinsic antioxidant defenses. Nature Neuroscience, 2008, 11, 476-487.	7.1	483

3

#	Article	IF	CITATIONS
37	Brief Alteration of NMDA or GABAA Receptor-mediated Neurotransmission Has Long Term Effects on the Developing Cerebral Cortex. Molecular and Cellular Proteomics, 2008, 7, 2293-2310.	2.5	60
38	Subacute proteome changes following traumatic injury of the developing brain: Implications for a dysregulation of neuronal migration and neurite arborization. Proteomics - Clinical Applications, 2007, 1, 640-649.	0.8	13
39	Brain morphology alterations in the basal ganglia and the hypothalamus following prenatal exposure to antiepileptic drugs. European Journal of Paediatric Neurology, 2007, 11, 297-301.	0.7	59
40	Glutamate antagonists are neurotoxins for the developing brain. Neurotoxicity Research, 2007, 11, 203-218.	1.3	17
41	Of Mice and Men: Should We Extrapolate Rodent Experimental Data to the Care of Human Neonates?. Anesthesiology, 2005, 102, 868-869.	1.3	15
42	Caspase-1-processed interleukins in hyperoxia-induced cell death in the developing brain. Annals of Neurology, 2005, 57, 50-59.	2.8	90
43	Protection with estradiol in developmental models of apoptotic neurodegeneration. Annals of Neurology, 2005, 58, 266-276.	2.8	71
44	Excitoxicity and excitatory amino acid antagonists in chronic neurodegenerative diseases. , 2005, , 44-56.		1
45	Sulthiame but not levetiracetam exerts neurotoxic effect in the developing rat brain. Experimental Neurology, 2005, 193, 497-503.	2.0	130
46	Apoptotic neurodegeneration in the context of traumatic injury to the developing brain. Experimental and Toxicologic Pathology, 2004, 56, 83-89.	2.1	41
47	Anticancer agents are potent neurotoxins in vitro and in vivo. Annals of Neurology, 2004, 56, 351-360.	2.8	111
48	Therapeutic doses of topiramate are not toxic to the developing rat brain. Experimental Neurology, 2004, 187, 403-409.	2.0	132
49	Do pediatric drugs cause developing neurons to commit suicide?. Trends in Pharmacological Sciences, 2004, 25, 135-139.	4.0	138
50	Mechanisms leading to disseminated apoptosis following NMDA receptor blockade in the developing rat brain. Neurobiology of Disease, 2004, 16, 440-453.	2.1	149
51	Oxygen causes cell death in the developing brain. Neurobiology of Disease, 2004, 17, 273-282.	2.1	211
52	Anesthesia-induced Developmental Neuroapoptosis. Anesthesiology, 2004, 101, 273-275.	1.3	152
53	Neuropathological and biochemical features of traumatic injury in the developing brain. Neurotoxicity Research, 2003, 5, 475-490.	1.3	31
54	ls it time to conclude that NMDA antagonists have failed? – Author's reply. Lancet Neurology, The, 2003, 2, 13.	4.9	0

#	Article	IF	CITATIONS
55	Antiepileptic Drugs and Apoptosis in the Developing Brain. Annals of the New York Academy of Sciences, 2003, 993, 103-114.	1.8	257
56	Antiepileptic drugs and apoptotic neurodegeneration in the developing brain. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 15089-15094.	3.3	712
57	Pathways Leading to Apoptotic Neurodegeneration Following Trauma to the Developing Rat Brain. Neurobiology of Disease, 2002, 11, 231-245.	2.1	80
58	Ethanol-induced apoptotic neurodegeneration in the developing C57BL/6 mouse brain. Developmental Brain Research, 2002, 133, 115-126.	2.1	275
59	Glutamate antagonists limit tumor growth. Biochemical Pharmacology, 2002, 64, 1195-1200.	2.0	74
60	Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury?. Lancet Neurology, The, 2002, 1, 383-386.	4.9	643
61	Clutamate and CABA receptor dysfunction in the fetal alcohol syndrome. Neurotoxicity Research, 2002, 4, 315-325.	1.3	58
62	Apoptosis in the in Vivo Mammalian Forebrain. Neurobiology of Disease, 2001, 8, 359-379.	2.1	171
63	Anandamide, but not 2-arachidonoylglycerol, accumulates during in vivo neurodegeneration. Journal of Neurochemistry, 2001, 78, 1415-1427.	2.1	197
64	Glutamate signaling and the fetal alcohol syndrome. Mental Retardation and Developmental Disabilities Research Reviews, 2001, 7, 267-275.	3.5	58
65	Neurotransmitters and apoptosis in the developing brain11Abbreviations: GABAA, γ-aminobutyric acid; NMDA; N-methyl-d-aspartate; PCP; phencyclidine; TUNEL, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling Biochemical Pharmacology, 2001, 62, 401-405.	2.0	258
66	Ethanol-induced apoptotic neurodegeneration in the developing brain. Apoptosis: an International Journal on Programmed Cell Death, 2000, 5, 515-521.	2.2	118
67	Environmental Agents That Have the Potential to Trigger Massive Apoptotic Neurodegeneration in the Developing Brain. Environmental Health Perspectives, 2000, 108, 383.	2.8	32
68	Mechanisms of neurodegeneration after paediatric brain injury. Current Opinion in Neurology, 2000, 13, 141-145.	1.8	17
69	Apoptotic neurodegeneration following trauma is markedly enhanced in the immature brain. Annals of Neurology, 1999, 45, 724-735.	2.8	232
70	Topical Review: Glutamate in Neurologic Diseases. Journal of Child Neurology, 1997, 12, 471-485.	0.7	122
71	Pharmacology of the AMPA Antagonist 2,3-Dihydroxy-6-Nitro-7-Sulfamoylbenzo-(F)-Quinoxaline. Annals of the New York Academy of Sciences, 1997, 825, 394-402.	1.8	7
72	Prevention of trauma-induced neurodegeneration in infant and adult rat brain: Glutamate antagonists. Metabolic Brain Disease, 1996, 11, 125-141.	1.4	50

#	Article	IF	CITATIONS
73	Prevention of Trauma-Induced Neurodegeneration in Infant Rat Brain. Pediatric Research, 1996, 39, 1020-1027.	1.1	73
74	Neurodegenerative Disorders: Clues from Glutamate and Energy Metabolism. Critical Reviews in Neurobiology, 1996, 10, 239-263.	3.3	74
75	Excitotoxicity and neurodegenerative diseases. Current Opinion in Neurology, 1995, 8, 487.	1.8	76
76	Energy Failure, Glutamate and Neuropathology: Relevance to Neurodegenerative Disorders. , 1994, , 127-140.		1
77	Aminooxyacetic acid produces excitotoxic lesions in the rat striatum. Synapse, 1991, 9, 129-135.	0.6	58
78	Dopamine control of seizure propagation: Intranigral dopamine D1 agonist SKF-38393 enhances susceptibility of seizures. Synapse, 1990, 5, 113-119.	0.6	83
79	Review: Cholinergic mechanisms and epileptogenesis. The seizures induced by pilocarpine: A novel experimental model of intractable epilepsy. Synapse, 1989, 3, 154-171.	0.6	586
80	Hypothermia enhances protective effect of MK-801 against hypoxic/ischemic brain damage in infant rats. Brain Research, 1989, 487, 184-187.	1.1	90
81	Effect of Aminophylline on the Protective Action of Common Antiepileptic Drugs Against Electroconvulsions in Mice. Epilepsia, 1986, 27, 204-208.	2.6	45
82	Aminophylline and CGS 8216 Reverse the Protective Action of Diazepam Against Electroconvulsions in Mice. Epilepsia, 1985, 26, 693-696.	2.6	32