James L Boyer

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6682767/james-l-boyer-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

10,964 245 100 57 h-index g-index citations papers 262 6.52 8.9 12,134 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
245	Mindfulness-based stress reduction may decrease stress, disease activity, and inflammatory cytokine levels in patients with autoimmune hepatitis <i>JHEP Reports</i> , 2022 , 4, 100450	10.3	
244	The role of bile acids in cholestatic liver injury. Annals of Translational Medicine, 2021, 9, 737	3.2	12
243	Role of Biliary Organoids in Cholestasis Research and Regenerative Medicine. <i>Seminars in Liver Disease</i> , 2021 , 41, 206-212	7.3	
242	The role of the retinoid receptor, RAR/RXR heterodimer, in liver physiology. <i>Biochimica Et Biophysica Acta - Molecular Basis of Disease</i> , 2021 , 1867, 166085	6.9	3
241	Outcome of COVID-19 in Patients With Autoimmune Hepatitis: An International Multicenter Study. Hepatology, 2021 , 73, 2099-2109	11.2	18
240	Hepatic NFAT signaling regulates the expression of inflammatory cytokines in cholestasis. <i>Journal of Hepatology</i> , 2021 , 74, 550-559	13.4	12
239	Adjunct Fenofibrate Up-regulates Bile Acid Glucuronidation and Improves Treatment Response For Patients With Cholestasis. <i>Hepatology Communications</i> , 2021 , 5, 2035-2051	6	O
238	A homozygous R148W mutation in Semaphorin 7A causes progressive familial intrahepatic cholestasis. <i>EMBO Molecular Medicine</i> , 2021 , 13, e14563	12	0
237	Letter to the Editor: On the Mechanisms of Biliary Flux. <i>Hepatology</i> , 2021 ,	11.2	
236	Fenofibrate Improves Liver Function and Reduces the Toxicity of the Bile Acid Pool in Patients With Primary Biliary Cholangitis and Primary Sclerosing Cholangitis Who Are Partial Responders to Ursodiol. <i>Clinical Pharmacology and Therapeutics</i> , 2020 , 108, 1213-1223	6.1	7
235	Polyploidy in Liver Function, Mitochondrial Metabolism, and Cancer 2020 , 603-613		
234	miRNAs and Hepatocellular Carcinoma 2020 , 183-194		
233	Bile Acid Metabolism in Health and Disease 2020 , 269-285		1
232	Cholangiocyte Biology and Pathobiology 2020 , 391-407		
231	∄-Antitrypsin Deficiency 2020 , 645-658		O
230	Pathophysiology of Portal Hypertension 2020 , 659-669		1
229	Immune Mechanisms of Viral Clearance and Disease Pathogenesis During Viral Hepatitis 2020 , 821-850		1

Pluripotent Stem Cells and Reprogramming 2020, 1036-1042 228 A Positive Feedback Loop of TET3 and TGF-II Promotes Liver Fibrosis. Cell Reports, 2020, 30, 1310-1318.e.50.6 22 227 The Central Role of the Liver in Iron Storage and Regulation of Systemic Iron Homeostasis 2020, 215-228 226 Time for the Elimination of Hepatitis C Virus as a Global Health Threat 2020, 935-952 225 The Dual Role of ABC Transporters in Drug Metabolism and Resistance to Chemotherapy 2020, 1007-1014 224 O Gap and Tight Junctions in Liver 2020, 160-173 223 Disorders of Bilirubin Metabolism 2020, 229-244 222 1 Primary Biliary Cholangitis: 2018 Practice Guidance From the American Association for the Study of 6 221 2.2 Liver Diseases. Clinical Liver Disease, 2020, 15, 1-2 Molecular Cholestasis 2020, 351-363 220 1 Basolateral Plasma Membrane Organic Anion Transporters 2020, 327-336 219 Telomeres and Telomerase in Liver Generation and Cirrhosis 2020, 992-999 218 Ribosome Biogenesis and its Role in Cell Growth and Proliferation in the Liver 2020, 174-182 217 216 Copper Metabolism and the Liver 2020, 207-214 Hepatic Adenosine Triphosphate-Binding Cassette Transport Proteins and Their Role in Physiology 215 2020, 313-326 Polycystic Liver Diseases 2020, 408-421 214 \circ Ca2+ Signaling in the Liver **2020**, 496-508 213 Clinical Genomics of NAFLD 2020, 509-520 212 1 Developmental Morphogens and Adult Liver Repair 2020, 539-549 211

210	Drug-Induced Liver Injury 2020 , 701-713	3
209	Toll-like Receptors in Liver Disease 2020 , 737-746	1
208	Experimental Models of Liver Cancer 2020 , 747-757	
207	Treatment of Liver Cancer 2020 , 782-791	
206	Hepatitis E Virus 2020 , 915-925	
205	Biological Principles and Clinical Issues Underlying Liver Transplantation for Viral-Induced End-Stage Liver Disease in the Era of Highly Effective Direct-Acting Antiviral Agents 2020 , 926-934	
204	Chromatin Regulation and Transcription Factor Cooperation in Liver Cells 2020, 1043-1049	
203	Drug Interactions in the Liver 2020 , 1050-1057	1
202	Metabolic Regulation of Hepatic Growth 2020 , 1058-1061	
201	Nuclear Pore Complex 2020 , 94-107	O
200	Mutations and Genomic Alterations in Liver Cancer 2020 , 773-781	
199	Ecatenin Signaling 2020 , 585-602	
198	Stem Cell-Fueled Maturational Lineages in Hepatic and Pancreatic Organogenesis 2020 , 521-538	
197	Peroxisome Assembly, Degradation, and Disease 2020 , 137-150	
196	Embryonic Development of the Liver 2020 , 14-22	1
195	Pathophysiologic Basis for Alternative Therapies for Cholestasis 2020 , 364-377	1
194	Liver Regeneration 2020 , 566-584	8
193	Liver-Directed Gene Therapy 2020 , 979-991	1

(2020-2020)

192	Liver Repopulation by Cell Transplantation and the Role of Stem Cells in Liver Biology 2020 , 550-565	1
191	Clinical Implications of the Molecular Biology of Hepatitis B Virus 2020 , 851-867	
190	Oxidative Stress and Inflammation in the Liver 2020 , 714-727	4
189	Imaging Cellular Proteins and Structures 2020 , 965-978	
188	Molecular Biology of Hepatitis Viruses 2020 , 793-820	О
187	Lineage Tracing 2020 , 1069-1074	
186	Lipoprotein Metabolism and Cholesterol Balance 2020 , 255-267	2
185	Organizational Principles of the Liver 2020 , 1-13	3
184	Hepatocyte Apoptosis 2020 , 195-205	1
183	Hepatic Lipid Droplets in Liver Function and Disease 2020 , 245-254	
182	Cytoskeletal Motors 2020 , 23-35	
181	Stellate Cells and Fibrosis 2020 , 444-454	O
180	Non-alcoholic Fatty Liver Disease and Insulin Resistance 2020 , 455-471	4
179	The Kidney in Liver Disease 2020 , 630-644	1
178	Non-alcoholic Fatty Liver Disease 2020 , 670-681	1
177	Viral Escape Mechanisms in Hepatitis C and the Clinical Consequences of Persistent Infection 2020 , 868-888	
176	Integrated Technologies for Liver Tissue Engineering 2020 , 1028-1035	
175	Hepatic Nuclear Receptors 2020 , 337-350	О

174	The Liver Sinusoidal Endothelial Cell 2020 , 422-434	6
173	The Hepatocellular Secretory Pathway 2020 , 75-85	
172	TGR5 (GPBAR1) in the Liver 2020 , 286-298	
171	Bile Acids as Signaling Molecules 2020 , 299-312	2
170	AMPK 2020 , 472-484	2
169	Insulin-Mediated PI3K and AKT Signaling 2020 , 485-495	2
168	The Hepatocyte as a Household for Plasmodium Parasites 2020 , 1075-1080	1
167	Endocytosis in Liver Function and Pathology 2020 , 62-74	1
166	Fenestrations in the Liver Sinusoidal Endothelial Cell 2020 , 435-443	5
165	The Gut Microbiome and Liver Disease 2020 , 1062-1068	O
164	Primary Cilia 2020 , 50-61	
163	Genome Editing by Targeted Nucleases and the CRISPR/Cas Revolution 2020 , 953-964	1
162	Toxins and Biliary Atresia 2020 , 1000-1006	О
161	Nucleoside Antiviral Agents for HCV 2020 , 906-914	
160	Mitochondrial Function, Dynamics, and Quality Control 2020 , 86-93	
159	Hepatocyte Surface Polarity 2020, 36-49	O
158	Stem Cell-Derived Liver Cells 2020 , 1015-1021	
157	Organelle D rganelle Contacts 2020 , 151-159	

(2017-2020)

156	Inflammasome Is Activated in the Liver of Cholestatic Patients and Aggravates Hepatic Injury in Bile Duct-Ligated Mouse. <i>Cellular and Molecular Gastroenterology and Hepatology</i> , 2020 , 9, 679-688	7.9	17	
155	Organic Solute Transporter Alpha Deficiency: A Disorder With Cholestasis, Liver Fibrosis, and Congenital Diarrhea. <i>Hepatology</i> , 2020 , 71, 1879-1882	11.2	10	
154	Effects of Vedolizumab in Patients With Primary Sclerosing Cholangitis and Inflammatory Bowel Diseases. <i>Clinical Gastroenterology and Hepatology</i> , 2020 , 18, 179-187.e6	6.9	24	
153	Protein Maturation and Processing at the Endoplasmic Reticulum 2020 , 108-121		1	
152	Protein Degradation and the Lysosomal System 2020 , 122-136		1	
151	Epidemiology of Hepatocellular Carcinoma 2020 , 758-772		19	
150	Tracking Hepatitis C Virus Interactions with the Hepatic Lipid Metabolism 2020 , 889-905		1	
149	Extracellular Vesicles and Exosomes 2020 , 1022-1027		3	
148	Patient-Derived Organoids from Human Bile: An In Vitro Method to Study Cholangiopathies. <i>Methods in Molecular Biology</i> , 2019 , 1981, 363-372	1.4	5	
147	Primary Biliary Cholangitis: 2018 Practice Guidance from the American Association for the Study of Liver Diseases. <i>Hepatology</i> , 2019 , 69, 394-419	11.2	224	
146	Bile-Derived Organoids From Patients With Primary Sclerosing Cholangitis Recapitulate Their Inflammatory Immune Profile. <i>Hepatology</i> , 2019 , 70, 871-882	11.2	25	
145	Cenicriviroc, a cytokine receptor antagonist, potentiates all-trans retinoic acid in reducing liver injury in cholestatic rodents. <i>Liver International</i> , 2018 , 38, 1128-1138	7.9	25	
144	Primary Sclerosing Cholangitis Is Not Rare Among Blacks in a Multicenter North American Consortium. <i>Clinical Gastroenterology and Hepatology</i> , 2018 , 16, 591-593	6.9	10	
143	Histologic features of autoimmune hepatitis: a critical appraisal. <i>Human Pathology</i> , 2018 , 82, 51-60	3.7	19	
142	H19 Is Expressed in Hybrid Hepatocyte Nuclear Factor 4Periportal Hepatocytes but Not Cytokeratin 19 Cholangiocytes in Cholestatic Livers. <i>Hepatology Communications</i> , 2018 , 2, 1356-1368	6	8	
141	Solute Carrier Organic Anion Transporter Family Member 3A1 Is a Bile Acid Efflux Transporter in Cholestasis. <i>Gastroenterology</i> , 2018 , 155, 1578-1592.e16	13.3	17	
140	The Role of Inflammation in the Mechanisms of Bile Acid-Induced Liver Damage. <i>Digestive Diseases</i> , 2017 , 35, 232-234	3.2	17	
139	Combination Therapy of All-Trans Retinoic Acid With Ursodeoxycholic Acid in Patients With Primary Sclerosing Cholangitis: A Human Pilot Study. <i>Journal of Clinical Gastroenterology</i> , 2017 , 51, e11-e16	3	29	

138	Na-taurocholate cotransporting polypeptide (NTCP/SLC10A1) ortholog in the marine skate is not a physiological bile salt transporter. <i>American Journal of Physiology - Regulatory Integrative and Comparative Physiology</i> , 2017 , 312, R477-R484	3.2	2
137	Bile acids initiate cholestatic liver injury by triggering a hepatocyte-specific inflammatory response. <i>JCI Insight</i> , 2017 , 2, e90780	9.9	131
136	CFTR-associated ligand is a negative regulator of Mrp2 expression. <i>American Journal of Physiology - Cell Physiology</i> , 2017 , 312, C40-C46	5.4	1
135	Mechanisms of bile acid mediated inflammation in the liver. <i>Molecular Aspects of Medicine</i> , 2017 , 56, 45-53	16.7	105
134	Studies on the mechanisms of bile acid initiated hepatic inflammation in cholestatic liver injury. <i>Inflammation and Cell Signaling</i> , 2017 , 4,		4
133	Sirtuin 1 activation alleviates cholestatic liver injury in a cholic acid-fed mouse model of cholestasis. Hepatology, 2016 , 64, 2151-2164	11.2	36
132	A Novel Di-Leucine Motif at the N-Terminus of Human Organic Solute Transporter Beta Is Essential for Protein Association and Membrane Localization. <i>PLoS ONE</i> , 2016 , 11, e0158269	3.7	8
131	Treatment of chronic cholestasis: What we know and what we will know?. <i>Clinical Liver Disease</i> , 2016 , 8, 140-144	2.2	
130	A Macrophage Migration Inhibitory Factor Polymorphism Is Associated with Autoimmune Hepatitis Severity in US and Japanese Patients. <i>Digestive Diseases and Sciences</i> , 2016 , 61, 3506-3512	4	20
129	Controlled-release mitochondrial protonophore reverses diabetes and steatohepatitis in rats. <i>Science</i> , 2015 , 347, 1253-6	33.3	190
128	Fibrates and cholestasis. <i>Hepatology</i> , 2015 , 62, 635-43	11.2	148
127	Canalicular membrane MRP2/ABCC2 internalization is determined by Ezrin Thr567 phosphorylation in human obstructive cholestasis. <i>Journal of Hepatology</i> , 2015 , 63, 1440-8	13.4	33
126	Na(+) /H(+) exchanger regulatory factor 1 knockout mice have an attenuated hepatic inflammatory response and are protected from cholestatic liver injury. <i>Hepatology</i> , 2015 , 62, 1227-36	11.2	13
125	Altered expression and function of canalicular transporters during early development of cholestatic liver injury in Abcb4-deficient mice. <i>American Journal of Physiology - Renal Physiology</i> , 2014 , 306, G670-6	5.1	14
124	The role of macrophage migration inhibitory factor in autoimmune liver disease. <i>Hepatology</i> , 2014 , 59, 580-91	11.2	75
123	All-trans-retinoic acid improves cholestasis in Enaphthylisothiocyanate-treated rats and Mdr2-/-mice. <i>Journal of Pharmacology and Experimental Therapeutics</i> , 2014 , 349, 94-8	4.7	27
122	Biosynthesis and trafficking of the bile salt export pump, BSEP: therapeutic implications of BSEP mutations. <i>Molecular Aspects of Medicine</i> , 2014 , 37, 3-14	16.7	43
121	Deleterious effect of oltipraz on extrahepatic cholestasis in bile duct-ligated mice. <i>Journal of Hepatology</i> , 2014 , 60, 160-6	13.4	37

(2010-2014)

120	Peroxisome proliferator-activated receptor lactivates human multidrug resistance transporter 3/ATP-binding cassette protein subfamily B4 transcription and increases rat biliary phosphatidylcholine secretion. <i>Hepatology</i> , 2014 , 59, 1030-42	11.2	53
119	Bile formation and secretion. <i>Comprehensive Physiology</i> , 2013 , 3, 1035-78	7.7	428
118	Now you see it, now you don R. Hepatology, 2013, 58, 446-447	11.2	4
117	Adult sea lamprey tolerates biliary atresia by altering bile salt composition and renal excretion. <i>Hepatology</i> , 2013 , 57, 2418-26	11.2	21
116	Elevated hepatic multidrug resistance-associated protein 3/ATP-binding cassette subfamily C 3 expression in human obstructive cholestasis is mediated through tumor necrosis factor alpha and c-Jun NH2-terminal kinase/stress-activated protein kinase-signaling pathway. <i>Hepatology</i> , 2012 , 55, 148	11.2 35-94	58
115	A C-terminal tyrosine-based motif in the bile salt export pump directs clathrin-dependent endocytosis. <i>Hepatology</i> , 2012 , 55, 1901-11	11.2	25
114	Nuclear factor-E2-related factor 2 is a major determinant of bile acid homeostasis in the liver and intestine. <i>American Journal of Physiology - Renal Physiology</i> , 2012 , 302, G925-36	5.1	43
113	Small-duct sclerosing cholangitis associated with Schistosoma mansoni. <i>Hepatology</i> , 2011 , 53, 712-3	11.2	1
112	Combination of retinoic acid and ursodeoxycholic acid attenuates liver injury in bile duct-ligated rats and human hepatic cells. <i>Hepatology</i> , 2011 , 53, 548-57	11.2	82
111	Drug-induced cholestasis. <i>Hepatology</i> , 2011 , 53, 1377-87	11.2	236
110	OstEdepletion protects liver from oral bile acid load. <i>American Journal of Physiology - Renal Physiology</i> , 2011 , 301, G574-9	5.1	18
109	NHERF-1 binds to Mrp2 and regulates hepatic Mrp2 expression and function. <i>Journal of Biological Chemistry</i> , 2010 , 285, 19299-307	5.4	46
108	Role of breast cancer resistance protein in the adaptive response to cholestasis. <i>Drug Metabolism and Disposition</i> , 2010 , 38, 1673-8	4	32
107	Retinoic acid represses CYP7A1 expression in human hepatocytes and HepG2 cells by FXR/RXR-dependent and independent mechanisms. <i>Journal of Lipid Research</i> , 2010 , 51, 2265-74	6.3	63
106	Aryl hydrocarbon receptor and NF-E2-related factor 2 are key regulators of human MRP4 expression. <i>American Journal of Physiology - Renal Physiology</i> , 2010 , 299, G126-35	5.1	69
_			
105	Organic solute transporter. OSTalpha-OSTbeta: its role in bile acid transport and cholestasis.	7.3	47
105	Organic solute transporter, OSTalpha-OSTbeta: its role in bile acid transport and cholestasis. Seminars in Liver Disease, 2010, 30, 178-85	7·3 7·3	47

102	Mouse organic solute transporter alpha deficiency enhances renal excretion of bile acids and attenuates cholestasis. <i>Hepatology</i> , 2010 , 51, 181-90	11.2	57
101	OST alpha-OST beta: a key membrane transporter of bile acids and conjugated steroids. <i>Frontiers in Bioscience - Landmark</i> , 2009 , 14, 2829-44	2.8	80
100	ItB all about bile. Hepatology, 2009, 49, 711-23	11.2	10
99	Nuclear factor erythroid 2-related factor 2 is a positive regulator of human bile salt export pump expression. <i>Hepatology</i> , 2009 , 50, 1588-96	11.2	60
98	ATP8B1 deficiency disrupts the bile canalicular membrane bilayer structure in hepatocytes, but FXR expression and activity are maintained. <i>Gastroenterology</i> , 2009 , 136, 1060-9	13.3	81
97	Bile canalicular secretion - tales from Vienna and Yale. <i>Wiener Medizinische Wochenschrift</i> , 2008 , 158, 534-8	2.9	6
96	N-Glycosylation of the alpha subunit does not influence trafficking or functional activity of the human organic solute transporter alpha/beta. <i>BMC Cell Biology</i> , 2008 , 9, 57		16
95	Degradation of the bile salt export pump at endoplasmic reticulum in progressive familial intrahepatic cholestasis type II. <i>Hepatology</i> , 2008 , 48, 1558-69	11.2	61
94	Arsenic (+3 oxidation state) methyltransferase and the methylation of arsenicals in the invertebrate chordate Ciona intestinalis. <i>FASEB Journal</i> , 2008 , 22, 796.1	0.9	
93	Ultrastructural Evidence of Intrahepatic Cholestasis Before and After Chenodeoxycholic Acid Therapy in Patients with Cholelithiasis: The National Cooperative Gallstone Study. <i>Hepatology</i> , 2007 , 3, 209-220	11.2	31
92	Nuclear receptors RXRalpha:RARalpha are repressors for human MRP3 expression. <i>American Journal of Physiology - Renal Physiology</i> , 2007 , 292, G1221-7	5.1	25
91	Levels of plasma membrane expression in progressive and benign mutations of the bile salt export pump (Bsep/Abcb11) correlate with severity of cholestatic diseases. <i>American Journal of Physiology - Cell Physiology</i> , 2007 , 293, C1709-16	5.4	81
90	The farnesoid X receptor FXRalpha/NR1H4 acquired ligand specificity for bile salts late in vertebrate evolution. <i>American Journal of Physiology - Regulatory Integrative and Comparative Physiology</i> , 2007 , 293, R1400-9	3.2	33
89	New perspectives for the treatment of cholestasis: lessons from basic science applied clinically. <i>Journal of Hepatology</i> , 2007 , 46, 365-71	13.4	63
88	Mrp4-/- mice have an impaired cytoprotective response in obstructive cholestasis. <i>Hepatology</i> , 2006 , 43, 1013-21	11.2	147
87	Upregulation of a basolateral FXR-dependent bile acid efflux transporter OSTalpha-OSTbeta in cholestasis in humans and rodents. <i>American Journal of Physiology - Renal Physiology</i> , 2006 , 290, G1124-	-3\(\dagge^1\)	218
86	FXR: a target for cholestatic syndromes?. Expert Opinion on Therapeutic Targets, 2006, 10, 409-21	6.4	37
85	Hepatic and extrahepatic synthesis and disposition of dinitrophenyl-S-glutathione in bile duct-ligated rats. <i>Drug Metabolism and Disposition</i> , 2006 , 34, 1301-9	4	15

(2002-2006)

84	Radixin is required to maintain apical canalicular membrane structure and function in rat hepatocytes. <i>Gastroenterology</i> , 2006 , 131, 878-84	13.3	89
83	A comparison of gene expression in mouse liver and kidney in obstructive cholestasis utilizing high-density oligonucleotide microarray technology. <i>World Journal of Gastroenterology</i> , 2006 , 12, 2536	-4 5 6	7
82	Nuclear receptor ligands: rational and effective therapy for chronic cholestatic liver disease?. <i>Gastroenterology</i> , 2005 , 129, 735-40	13.3	62
81	Methotrexate (MTX) plus ursodeoxycholic acid (UDCA) in the treatment of primary biliary cirrhosis. Hepatology, 2005 , 42, 1184-93	11.2	94
80	OSTalpha-OSTbeta: a major basolateral bile acid and steroid transporter in human intestinal, renal, and biliary epithelia. <i>Hepatology</i> , 2005 , 42, 1270-9	11.2	277
79	Down-regulation of the organic cation transporter 1 of rat liver in obstructive cholestasis. Hepatology, 2004 , 39, 1382-9	11.2	57
78	Lack of biliary lipid excretion in the little skate, Raja erinacea, indicates the absence of functional Mdr2, Abcg5, and Abcg8 transporters. <i>American Journal of Physiology - Renal Physiology</i> , 2004 , 286, G76	52 ⁵ 8	12
77	Multidrug resistance-associated protein 4 is up-regulated in liver but down-regulated in kidney in obstructive cholestasis in the rat. <i>Journal of Hepatology</i> , 2004 , 40, 585-91	13.4	151
76	Mechanisms of Bile Formation: An Introduction 2004 , 1-8		1
75	Taurolithocholic acid exerts cholestatic effects via phosphatidylinositol 3-kinase-dependent mechanisms in perfused rat livers and rat hepatocyte couplets. <i>Journal of Biological Chemistry</i> , 2003 , 278, 17810-8	5.4	65
74	Functional complementation between a novel mammalian polygenic transport complex and an evolutionarily ancient organic solute transporter, OSTalpha-OSTbeta. <i>Journal of Biological Chemistry</i> , 2003 , 278, 27473-82	5.4	144
73	Tumor necrosis factor alpha-dependent up-regulation of Lrh-1 and Mrp3(Abcc3) reduces liver injury in obstructive cholestasis. <i>Journal of Biological Chemistry</i> , 2003 , 278, 36688-98	5.4	124
72	Cholestatic syndromes. Current Opinion in Gastroenterology, 2003, 19, 216-31	3	8
71	Bile salt transporters: molecular characterization, function, and regulation. <i>Physiological Reviews</i> , 2003 , 83, 633-71	47.9	775
70	Down-regulation of the Na+/taurocholate cotransporting polypeptide during pregnancy in the rat. Journal of Hepatology, 2003 , 38, 148-55	13.4	36
69	Ursodeoxycholic acid diminishes Fas-ligand-induced apoptosis in mouse hepatocytes. <i>Hepatology</i> , 2002 , 36, 49-54	11.2	60
68	Mechanisms of hepatic transport of drugs: implications for cholestatic drug reactions. <i>Seminars in Liver Disease</i> , 2002 , 22, 123-36	7.3	97
67	Cholestatic syndromes. <i>Current Opinion in Gastroenterology</i> , 2002 , 18, 314-29	3	6

66	Unimpaired osmotic water permeability and fluid secretion in bile duct epithelia of AQP1 null mice. <i>American Journal of Physiology - Renal Physiology</i> , 2002 , 283, G739-46	5.1	33
65	Sperber I. Secretion of organic anions in the formation of urine and bile[Pharmacol. Rev. 1959;11:109-134]. <i>Journal of Hepatology</i> , 2002 , 36, 4-7	13.4	6
64	Organ-specific alterations in RAR alpha:RXR alpha abundance regulate rat Mrp2 (Abcc2) expression in obstructive cholestasis. <i>Gastroenterology</i> , 2002 , 123, 599-607	13.3	68
63	The role of bile salt export pump mutations in progressive familial intrahepatic cholestasis type II. <i>Journal of Clinical Investigation</i> , 2002 , 110, 965-972	15.9	107
62	The role of bile salt export pump mutations in progressive familial intrahepatic cholestasis type II. <i>Journal of Clinical Investigation</i> , 2002 , 110, 965-72	15.9	32
61	Cellular localization and up-regulation of multidrug resistance-associated protein 3 in hepatocytes and cholangiocytes during obstructive cholestasis in rat liver. <i>Hepatology</i> , 2001 , 33, 783-91	11.2	229
60	Adaptive regulation of bile salt transporters in kidney and liver in obstructive cholestasis in the rat. <i>Gastroenterology</i> , 2001 , 121, 1473-84	13.3	136
59	Role of sodium/hydrogen exchanger isoform NHE3 in fluid secretion and absorption in mouse and rat cholangiocytes. <i>American Journal of Physiology - Renal Physiology</i> , 2001 , 280, G247-54	5.1	49
58	Cl(-)-dependent secretory mechanisms in isolated rat bile duct epithelial units. <i>American Journal of Physiology - Renal Physiology</i> , 2001 , 281, G438-46	5.1	18
57	Isolation of functional polarized bile duct units from mouse liver. <i>American Journal of Physiology -</i> Renal Physiology, 2001 , 280, G241-6	5.1	21
56	Bile salt export pump is highly conserved during vertebrate evolution and its expression is inhibited by PFIC type II mutations. <i>American Journal of Physiology - Renal Physiology</i> , 2001 , 281, G316-22	5.1	51
55	Induction of murine hepatocyte death by membrane-bound CD95 (Fas/APO-1)-ligand: characterization of an in vitro system. <i>Hepatology</i> , 2000 , 32, 779-85	11.2	24
54	Bile salt excretion in skate liver is mediated by a functional analog of Bsep/Spgp, the bile salt export pump. <i>American Journal of Physiology - Renal Physiology</i> , 2000 , 278, G57-63	5.1	23
53	ATP-dependent GSH and glutathione S-conjugate transport in skate liver: role of an Mrp functional homologue. <i>American Journal of Physiology - Renal Physiology</i> , 2000 , 279, G417-25	5.1	23
52	Molecular alterations in hepatocyte transport mechanisms in acquired cholestatic liver disorders. <i>Seminars in Liver Disease</i> , 2000 , 20, 373-84	7.3	95
51	Molecular identification and functional characterization of Mdr1a in rat cholangiocytes. <i>Gastroenterology</i> , 2000 , 119, 1113-22	13.3	40
50	Expression of the bile salt export pump is maintained after chronic cholestasis in the rat. <i>Gastroenterology</i> , 2000 , 118, 163-72	13.3	222
49	Canalicular export pumps traffic with polymeric immunoglobulin A receptor on the same microtubule-associated vesicle in rat liver. <i>Journal of Biological Chemistry</i> , 1999 , 274, 26416-24	5.4	35

48	Hepatic sequestration and modulation of the canalicular transport of the organic cation, daunorubicin, in the Rat. <i>Hepatology</i> , 1999 , 29, 483-93	11.2	21
47	Modulation of protein kinase C by taurolithocholic acid in isolated rat hepatocytes. <i>Hepatology</i> , 1999 , 29, 477-82	11.2	70
46	The effect of ursodeoxycholic acid on the florid duct lesion of primary biliary cirrhosis. <i>Hepatology</i> , 1999 , 30, 602-5	11.2	19
45	Molecular regulation of hepatocellular transport systems in cholestasis. <i>Journal of Hepatology</i> , 1999 , 31, 165-78	13.4	131
44	Characterization of ion transport mechanisms involved in bombesin-stimulated biliary secretion in rat cholangiocytes. <i>Journal of Hepatology</i> , 1999 , 30, 1045-51	13.4	19
43	Vasoactive intestinal polypeptide is a potent regulator of bile secretion from rat cholangiocytes. <i>Gastroenterology</i> , 1999 , 117, 420-8	13.3	58
42	Clinicopathology conferences: inflammation-induced cholestasis. <i>Hepatology</i> , 1998 , 28, 253-60	11.2	57
41	Maternal cholestasis does not affect the ontogenic pattern of expression of the Na+/taurocholate cotransporting polypeptide (ntcp) in the fetal and neonatal rat liver. <i>Hepatology</i> , 1998 , 28, 789-95	11.2	21
40	Ursodeoxycholic acid in cholestasis: potential mechanisms of action and therapeutic applications. <i>Hepatology</i> , 1998 , 28, 1449-53	11.2	182
39	Nitric oxide and guanosine 3P,5Pcyclic monophosphate stimulate bile secretion in isolated rat hepatocyte couplets, but not in isolated bile duct units. <i>Hepatology</i> , 1998 , 28, 1621-8	11.2	24
38	Molecular pathogenesis of cholestasis. New England Journal of Medicine, 1998, 339, 1217-27	59.2	645
37	Enterohepatic circulation of scymnol sulfate in an elasmobranch, the little skate (Raja erinacea). <i>American Journal of Physiology - Renal Physiology</i> , 1997 , 273, G1023-30	5.1	10
36	ATP regulation of a swelling-activated osmolyte channel in skate hepatocytes. <i>The Journal of Experimental Zoology</i> , 1997 , 279, 471-5		11
35	Regulation of intracellular pH in the hepatocyte. Mechanisms and physiological implications. <i>Journal of Hepatology</i> , 1996 , 24, 631-44	13.4	33
34	Vesicle targeting to the apical domain regulates bile excretory function in isolated rat hepatocyte couplets. <i>Gastroenterology</i> , 1995 , 109, 1600-11	13.3	94
33	Cytoskeletal organization in clusters of isolated polarized skate hepatocytes: structural and functional evidence for microtubule-dependent transcytosis. <i>The Journal of Experimental Zoology</i> , 1995 , 271, 273-84		15
32	Effects of protein kinase C and cytosolic Ca2+ on exocytosis in the isolated perfused rat liver. <i>Hepatology</i> , 1994 , 20, 1032-40	11.2	33
31	Primary biliary cirrhosis: survival of a large cohort of symptomatic and asymptomatic patients followed for 24 years. <i>Journal of Hepatology</i> , 1994 , 20, 707-13	13.4	126

30	Effects of tauroursodeoxycholic acid on cytosolic Ca2+ signals in isolated rat hepatocytes. <i>Gastroenterology</i> , 1993 , 104, 604-12	13.3	103
29	Effects of Ca2+ agonists on cytosolic Ca2+ in isolated hepatocytes and on bile secretion in the isolated perfused rat liver. <i>Hepatology</i> , 1992 , 15, 107-16	11.2	67
28	Papaverine inhibits transcytotic vesicle transport and lipid excretion into bile in isolated perfused rat liver. <i>Hepatology</i> , 1992 , 16, 1036-42	11.2	13
27	Mechanisms and regulation of bile secretion. <i>Hepatology</i> , 1991 , 14, 551-566	11.2	352
26	Mechanisms and regulation of bile secretion 1991 , 14, 551		27
25	Taurocholate stimulates transcytotic vesicular pathways labeled by horseradish peroxidase in the isolated perfused rat liver. <i>Gastroenterology</i> , 1990 , 99, 216-28	13.3	91
24	Preparation of basolateral (sinusoidal) and canalicular plasma membrane vesicles for the study of hepatic transport processes. <i>Methods in Enzymology</i> , 1990 , 192, 534-45	1.7	57
23	Cryptic Na+,K(+)-ATPase activity in rat liver canalicular plasma membranes: evidence for its basolateral origin. <i>Hepatology</i> , 1990 , 11, 223-9	11.2	18
22	The use of isolated rat hepatocyte couplets in hepatobiliary physiology. <i>Journal of Hepatology</i> , 1990 , 10, 387-94	13.4	44
21	Characterizing mechanisms of hepatic bile acid transport utilizing isolated membrane vesicles. <i>Methods in Enzymology</i> , 1990 , 192, 517-33	1.7	25
20	Hepatic toxicity of vitamin A and synthetic retinoids. <i>Journal of Gastroenterology and Hepatology</i> (Australia), 1990 , 5, 334-42	4	56
19	Protein kinase C agonists inhibit bile secretion independently of effects on the microcirculation in the isolated perfused rat liver. <i>Hepatology</i> , 1989 , 10, 8-13	11.2	59
18	The effect of changes in the fluid state of rat liver plasma membrane on the transport of taurocholate. <i>Hepatology</i> , 1987 , 7, 61-6	11.2	53
17	Isolated rat hepatocyte couplets in short-term culture: structural characteristics and plasma membrane reorganization. <i>Hepatology</i> , 1987 , 7, 216-23	11.2	142
16	Mechanisms of Bile Secretion and Hepatic Transport 1986 , 609-636		26
15	Effect of albumin binding on extraction of sulfobromophthalein by perfused elasmobranch liver: evidence for dissociation-limited uptake. <i>Hepatology</i> , 1984 , 4, 492-501	11.2	51
14	Primary biliary cirrhosis. <i>Hepatology</i> , 1984 , 4, 29S-32S	11.2	15
13	Biochemical separation of Na+,K+-ATPase from a "purified" light density, "canalicular"-enriched plasma membrane fraction from rat liver. <i>Hepatology</i> , 1983 , 3, 18-28	11.2	44

LIST OF PUBLICATIONS

12	significance?. <i>Hepatology</i> , 1983 , 3, 614-7	11.2	66
11	The prognostic importance of clinical and histologic features in asymptomatic and symptomatic primary biliary cirrhosis. <i>New England Journal of Medicine</i> , 1983 , 308, 1-7	59.2	360
10	A prospective morphologic evaluation of hepatic toxicity of chenodeoxycholic acid in patients with cholelithiasis: the National Cooperative Gallstone Study. <i>Hepatology</i> , 1982 , 2, 187-201	11.2	42
9	Structural heterogeneity of hepatocyte "tight" junctions: a quantitative analysis. <i>Hepatology</i> , 1981 , 1, 193-203	11.2	26
8	Sodium taurocholate modifies the bile acid-independent fraction of canalicular bile flow in the rhesus monkey. <i>Journal of Clinical Investigation</i> , 1979 , 64, 312-20	15.9	42
7	Selective Hepatic Uptake and Biliary Excretion of 35S-Sulfobromophthalein in Marine Elasmobranchs. <i>Gastroenterology</i> , 1976 , 70, 254-256	13.3	15
6	Canalicular bile secretion in man. Studies utilizing the biliary clearance of (14C)mannitol. <i>Journal of Clinical Investigation</i> , 1974 , 54, 773-81	15.9	108
5	Pattern of necrosis in acute viral hepatitis. Prognostic value of bridging (subacute hepatic necrosis). <i>New England Journal of Medicine</i> , 1970 , 283, 1063-71	59.2	216
4	Canalicular Bile flow and Bile Secretory Pressure. <i>Gastroenterology</i> , 1970 , 59, 853-859	13.3	100
3	Hepatic metabolism of 1-14C octanoic and 1-14C margaric acids. <i>Lipids</i> , 1969 , 4, 615-7	1.6	5
2	Thiobacillus novellus. I. Growth on organic and inorganic media. <i>Journal of Bacteriology</i> , 1959 , 78, 197-2	Growth on organic and inorganic media. <i>Journal of Bacteriology</i> , 1959 , 78, 197-20 2 _{.5} 30	
1	Adaptive Regulation of Hepatocyte Transporters in Cholestasis681-702		1