Douglas C Montgomery

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6682558/publications.pdf

Version: 2024-02-01

471061 377514 1,160 40 17 34 g-index citations h-index papers 46 46 46 820 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Aliased informed model selection strategies for sixâ \in factor noâ \in confounding designs. Quality and Reliability Engineering International, 2021, 37, 3055.	1.4	O
2	A compound optimality criterion for Dâ€efficient and separationâ€robust designs for the logistic regression model. Quality and Reliability Engineering International, 2020, , .	1.4	0
3	Paper-based Vertical Flow Immunoassay (VFI) for detection of bio-threat pathogens. Talanta, 2019, 191, 81-88.	2.9	58
4	Partitioned Search with Column Resampling for Locating Array Construction. , 2019, , .		1
5	Non-sequential augmentation strategies to address separation in logistic regression. International Journal of Experimental Design and Process Optimisation, 2019, 6, 167.	0.1	1
6	Separation in <i>D</i> àêoptimal experimental designs for the logistic regression model. Quality and Reliability Engineering International, 2019, 35, 776-787.	1.4	4
7	50Âyears of the <i>Journal of Quality Technology</i> . Journal of Quality Technology, 2018, 50, 2-16.	1.8	6
8	Systems for modern quality and business improvement. Quality Technology and Quantitative Management, 2017, 14, 343-352.	1.1	17
9	Partial replication of small two-level factorial designs. Quality Engineering, 2017, 29, 190-195.	0.7	6
10	Visualization for Data Science: Adding Credibility, Legitimacy, and Saliency. Big Data, 2016, 4, 73-74.	2.1	4
11	Analysis of Subjective Ordinal Responses in Mixture Experiments. Journal of Quality Technology, 2016, 48, 196-208.	1.8	2
12	A comparison of two-level designs to estimate all main effects and two-factor interactions. Quality Engineering, 2016, 28, 369-380.	0.7	5
13	Alternatives to resolution III regular fractional factorial designs for 9–14 factors in 16 runs. Applied Stochastic Models in Business and Industry, 2015, 31, 50-58.	0.9	3
14	Stu Hunter's Contributions to Experimental Design and Quality Engineering. Quality Engineering, 2014, 26, 5-15.	0.7	6
15	Simultaneous improvement of energy efficiency and product quality in PCB lamination process. International Journal of Precision Engineering and Manufacturing - Green Technology, 2014, 1, 247-256.	2.7	6
16	Choice of second-order response surface designs for logistic and Poisson regression models. International Journal of Experimental Design and Process Optimisation, 2009, 1, 2.	0.1	17
17	The Use of Supersaturated Experiments in Turbine Engine Development. Quality Engineering, 2007, 19, 17-27.	0.7	14
18	Improving the performance of the multivariate exponentially weighted moving average control chart. Quality and Reliability Engineering International, 1999, 15, 161-166.	1.4	23

#	Article	IF	CITATIONS
19	Multivariate statistical process monitoring and diagnosis with grouped regressionâ€adjusted variables. Communications in Statistics Part B: Simulation and Computation, 1999, 28, 309-328.	0.6	52
20	A robust regression technique using compound estimation. Naval Research Logistics, 1998, 45, 125-139.	1.4	8
21	SOME CAUTIONS IN THE USE OF PLACKETT-BURMAN DESIGNS. Quality Engineering, 1997, 10, 371-381.	0.7	18
22	MULTIVARIATE AND UNIVARIATE PROCESS CONTROL: GEOMETRY AND SHIFT DIRECTIONS. Quality and Reliability Engineering International, 1997, 13, 153-158.	1.4	16
23	Confidence intervals for variance components from gauge capability studies. Quality and Reliability Engineering International, 1997, 13, 361-369.	1.4	25
24	Confidence intervals for variance components from gauge capability studies. Quality and Reliability Engineering International, 1997, 13, 361-369.	1.4	1
25	PROCESS CAPABILITY INDICES AND NON-NORMAL DISTRIBUTIONS. Quality Engineering, 1996, 9, 305-316.	0.7	110
26	Statistical process monitoring with principal components. Quality and Reliability Engineering International, 1996, 12, 203-210.	1.4	58
27	A biased-robust regression technique for the combined outlier-multicollinearity problem. Journal of Statistical Computation and Simulation, 1996, 56, 1-22.	0.7	17
28	A review of statistical process control techniques for short run manufacturing systems. Communications in Statistics - Theory and Methods, 1996, 25, 2723-2737.	0.6	41
29	Modified Desirability Functions for Multiple Response Optimization. Journal of Quality Technology, 1996, 28, 337-345.	1.8	301
30	OPTIMAL GUARD BANDS FOR GAUGES IN SERIES. Quality Engineering, 1996, 9, 167-177.	0.7	8
31	Fitting models to data: Interaction versus polynomial? your choice. Communications in Statistics - Theory and Methods, 1996, 25, 2531-2555.	0.6	3
32	FEEDBACK CONTROL AND STATISTICAL PROCESS MONITORING. International Journal of Reliability, Quality and Safety Engineering, 1996, 03, 231-241.	0.4	4
33	A FAST INITIAL RESPONSE SCHEME FOR THE EXPONENTIALLY WEIGHTED MOVING AVERAGE CONTROL CHART. Quality Engineering, 1996, 9, 317-327.	0.7	35
34	Shortâ€run statistical process control: <i>Q</i> à€€hart enhancements and alternative methods. Quality and Reliability Engineering International, 1994, 10, 87-97.	1.4	44
35	PREDICTION USING REGRESSION MODELS WITH MULTICOLLINEAR PREDICTOR VARIABLES. IIE Transactions, 1993, 25, 73-85.	2.1	28
36	THE USE OF STATISTICAL PROCESS CONTROL AND DESIGN OF EXPERIMENTS IN PRODUCT AND PROCESS IMPROVEMENT. IIE Transactions, 1992, 24, 4-17.	2.1	70

#	Article	IF	CITATIONS
37	AN APPLICATION OF STATISTICAL PROCESS CONTROL IN JET-TURBINE ENGINE COMPONENT MANUFACTURING. Quality Engineering, 1991, 4, 197-210.	0.7	12
38	Detection of process upsetsâ€"sample autocorrelation control chart and group autocorrelation control chart applications. Quality and Reliability Engineering International, 1991, 7, 133-140.	1.4	18
39	USING FRACTIONAL FACTORIAL DESIGNS FOR ROBUST PROCESS DEVELOPMENT. Quality Engineering, 1990, 3, 193-205.	0.7	65
40	A timeâ€series approach to discrete realâ€time process quality control. Quality and Reliability Engineering International, 1989, 5, 309-317.	1.4	48