Bruce King

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6682384/publications.pdf Version: 2024-02-01

236833 223716 2,289 69 25 46 h-index citations g-index papers 69 69 69 2037 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The relationship between meal carbohydrate quantity and the insulin to carbohydrate ratio required to maintain glycaemia is nonâ€linear in young people with type 1 diabetes: A randomized crossover trial. Diabetic Medicine, 2022, 39, e14675.	1.2	2
2	Effects of Dietary Fat and Protein on Glucoregulatory Hormones in Adolescents and Young Adults With Type 1 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e205-e213.	1.8	0
3	Longitudinal audit of assessment and pharmaceutical intervention for cardiovascular risk in the Australasian Diabetes Data Network. Diabetes, Obesity and Metabolism, 2022, 24, 354-361.	2.2	3
4	A Randomized Crossover Trial Comparing Glucose Control During Moderate-Intensity, High-Intensity, and Resistance Exercise With Hybrid Closed-Loop Insulin Delivery While Profiling Potential Additional Signals in Adults With Type 1 Diabetes. Diabetes Care, 2022, 45, 194-203.	4.3	24
5	Increased paediatric presentations of severe diabetic ketoacidosis in an Australian tertiary centre during the COVIDâ€19 pandemic. Diabetic Medicine, 2021, 38, e14417.	1.2	77
6	Determinants of Cardiovascular Risk in 7000 Youth With Type 1 Diabetes in the Australasian Diabetes Data Network. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 133-142.	1.8	7
7	Changes to care delivery at nine international pediatric diabetes clinics in response to the <scp>COVID</scp> â€19 global pandemic. Pediatric Diabetes, 2021, 22, 463-468.	1.2	21
8	In children and young people with type 1 diabetes using Pump therapy, an additional 40% of the insulin dose for a highâ€fat, highâ€protein breakfast improves postprandial glycaemic excursions: A crossâ€over trial. Diabetic Medicine, 2021, 38, e14511.	1.2	14
9	For a high fat, high protein breakfast, preprandial administration of 125% of the insulin dose improves postprandial glycaemic excursions in people with type 1 diabetes using multiple daily injections: A crossâ€over trial. Diabetic Medicine, 2021, 38, e14512.	1.2	16
10	Additional Insulin Is Required in Both the Early and Late Postprandial Periods for Meals High in Protein and Fat: A Randomized Trial. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e3611-e3618.	1.8	6
11	Insulin strategies for dietary fat and protein in type 1 diabetes: A systematic review. Diabetic Medicine, 2021, 38, e14641.	1.2	8
12	Effect of a Hybrid Closed-Loop System on Glycemic and Psychosocial Outcomes in Children and Adolescents With Type 1 Diabetes. JAMA Pediatrics, 2021, 175, 1227.	3.3	54
13	Does dietary fat cause a dose dependent glycemic response in youth with type 1 diabetes?. Pediatric Diabetes, 2021, 22, 1108-1114.	1.2	1
14	A systematic stochastic design strategy achieving an optimal tradeoff between peak BGL and probability of hypoglycaemic events for individuals having type 1 diabetes mellitus. Biomedical Signal Processing and Control, 2020, 57, 101813.	3.5	8
15	Effect of frequency of sensor use on glycaemic control in individuals on sensor-augmented pump therapy with and without Predictive Low Clucose Management System. Diabetes Research and Clinical Practice, 2020, 159, 107989.	1.1	3
16	P450 Oxidoreductase Deficiency: A Systematic Review and Meta-analysis of Genotypes, Phenotypes, and Their Relationships. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e42-e52.	1.8	19
17	Insulin Dosing for Fat and Protein: Is it Time?. Diabetes Care, 2020, 43, 13-15.	4.3	20
18	Families' reports of problematic foods, management strategies and continuous glucose monitoring in type 1 diabetes: A crossâ€sectional study. Nutrition and Dietetics, 2020, 78, 449-457.	0.9	8

BRUCE KING

#	Article	IF	CITATIONS
19	Temporal trends in diabetic ketoacidosis at diagnosis of paediatric type 1 diabetes between 2006 and 2016: results from 13 countries in three continents. Diabetologia, 2020, 63, 1530-1541.	2.9	86
20	The effect of patientâ€managed stress dosing on electrolytes and blood pressure in acute illness in children with adrenal insufficiency. Clinical Endocrinology, 2020, 93, 97-103.	1.2	5
21	Highâ€protein meals require 30% additional insulin to prevent delayed postprandial hyperglycaemia. Diabetic Medicine, 2020, 37, 1185-1191.	1.2	9
22	346-OR: In Young People with T1D, Additional Mealtime Insulin Produces a Dose-Dependent Improvement in Glycemia after a High-Fat, High-Protein Meal. Diabetes, 2020, 69, 346-OR.	0.3	1
23	Dietary protein affects both the dose and pattern of insulin delivery required to achieve postprandial euglycaemia in Type 1 diabetes: a randomized trial. Diabetic Medicine, 2019, 36, 499-504.	1.2	27
24	Young children, adolescent girls and women with type 1 diabetes are more overweight and obese than reference populations, and this is associated with increased cardiovascular risk factors. Diabetic Medicine, 2019, 36, 1487-1493.	1.2	19
25	Impact of dietary protein on postprandial glycaemic control and insulin requirements in Type 1 diabetes: a systematic review. Diabetic Medicine, 2019, 36, 1585-1599.	1.2	18
26	ISPAD Annual Conference 2018 Highlights. Pediatric Diabetes, 2019, 20, 375-379.	1.2	0
27	Dietary intake and eating patterns of young children with type 1 diabetes achieving glycemic targets. BMJ Open Diabetes Research and Care, 2019, 7, e000663.	1.2	36
28	Characteristics of Automated Insulin Suspension and Glucose Responses with the Predictive Low-Glucose Management System. Diabetes Technology and Therapeutics, 2019, 21, 28-34.	2.4	4
29	The ups and downs of lowâ€carbohydrate diets in the management of Type 1 diabetes: a review of clinical outcomes. Diabetic Medicine, 2019, 36, 326-334.	1.2	58
30	Reduction in Hypoglycemia With the Predictive Low-Glucose Management System: A Long-term Randomized Controlled Trial in Adolescents With Type 1 Diabetes. Diabetes Care, 2018, 41, 303-310.	4.3	114
31	Young children with type 1 diabetes can achieve glycemic targets without hypoglycemia: Results of a novel intensive diabetes management program. Pediatric Diabetes, 2018, 19, 769-775.	1.2	16
32	Control Limitations in Models of T1DM and the Robustness of Optimal Insulin Delivery. Journal of Diabetes Science and Technology, 2018, 12, 926-936.	1.3	5
33	Effect of 6 months hybrid closed-loop insulin delivery in young people with type 1 diabetes: a randomised controlled trial protocol. BMJ Open, 2018, 8, e020275.	0.8	11
34	Variations in the management of acute illness in children with congenital adrenal hyperplasia: An audit of three paediatric hospitals. Clinical Endocrinology, 2018, 89, 577-585.	1.2	20
35	A randomized comparison of three prandial insulin dosing algorithms for children and adolescents with Type 1 diabetes. Diabetic Medicine, 2018, 35, 1440-1447.	1.2	27
36	Effect of 6 months of hybrid closed-loop insulin delivery in adults with type 1 diabetes: a randomised controlled trial protocol. BMJ Open, 2018, 8, e020274.	0.8	7

BRUCE KING

#	Article	IF	CITATIONS
37	Initiation of insulin pump therapy in children at diagnosis of type 1 diabetes resulted in improved long-term glycemic control. Pediatric Diabetes, 2017, 18, 26-32.	1.2	12
38	Increasing the protein quantity in a meal results in doseâ€dependent effects on postprandial glucose levels in individuals with Type 1 diabetes mellitus. Diabetic Medicine, 2017, 34, 851-854.	1.2	55
39	Optimizing the combination insulin bolus split for a highâ€fat, highâ€protein meal in children and adolescents using insulin pump therapy. Diabetic Medicine, 2017, 34, 1380-1384.	1.2	29
40	Prevalence of Celiac Disease in 52,721 Youth With Type 1 Diabetes: International Comparison Across Three Continents. Diabetes Care, 2017, 40, 1034-1040.	4.3	104
41	Response to Comment on Craig et al. Prevalence of Celiac Disease in 52,721 Youth With Type 1 Diabetes: International Comparison Across Three Continents. Diabetes Care 2017;40:1034–1040. Diabetes Care, 2017, 40, e168-e169.	4.3	3
42	The Australasian Diabetes Data Network: first national audit of children and adolescents with type 1 diabetes. Medical Journal of Australia, 2017, 206, 121-125.	0.8	83
43	Evaluation of a novel continuous glucose monitoring guided system for adjustment of insulin dosingÂ-ÂPumpTune: a randomized controlled trial. Pediatric Diabetes, 2016, 17, 478-482.	1.2	5
44	Application of MPC incorporating Stochastic Programming to Type 1 diabetes treatment. , 2016, , .		7
45	Safety and efficacy of the predictive low glucose management system in the prevention of hypoglycaemia: protocol for randomised controlled home trial to evaluate the Suspend before low function. BMJ Open, 2016, 6, e011589.	0.8	16
46	A performance limitation for blood glucose regulation in type 1 diabetes accounting for insulin delivery delays. , 2016, , .		1
47	Effectiveness of a Predictive Algorithm in the Prevention of Exercise-Induced Hypoglycemia in Type 1 Diabetes. Diabetes Technology and Therapeutics, 2016, 18, 543-550.	2.4	34
48	Prevention of Insulin-Induced Hypoglycemia in Type 1 Diabetes with Predictive Low Glucose Management System. Diabetes Technology and Therapeutics, 2016, 18, 436-443.	2.4	29
49	Influence of dietary protein on postprandial blood glucose levels in individuals with TypeÂ1 diabetes mellitus using intensive insulin therapy. Diabetic Medicine, 2016, 33, 592-598.	1.2	83
50	Nonlinear Insulin to Carbohydrate Rule for Treatment of Type 1 Diabetes. IFAC-PapersOnLine, 2015, 48, 198-203.	0.5	4
51	Impact of Fat, Protein, and Glycemic Index on Postprandial Glucose Control in Type 1 Diabetes: Implications for Intensive Diabetes Management in the Continuous Glucose Monitoring Era. Diabetes Care, 2015, 38, 1008-1015.	4.3	270
52	A fundamental control limitation for linear positive systems with application to Type 1 diabetes treatment. Automatica, 2015, 55, 73-77.	3.0	45
53	The relationship between carbohydrate and the mealtime insulin dose in type 1 diabetes. Journal of Diabetes and Its Complications, 2015, 29, 1323-1329.	1.2	35
54	The Role of Dietary Protein and Fat in Glycaemic Control in Type 1 Diabetes: Implications for Intensive Diabetes Management. Current Diabetes Reports, 2015, 15, 61.	1.7	53

BRUCE KING

#	Article	IF	CITATIONS
55	Bubble formation occurs in insulin pumps in response to changes in ambient temperature and atmospheric pressure but not as a result of vibration. BMJ Open Diabetes Research and Care, 2014, 2, e000036.	1.2	14
56	Extended insulin boluses cannot control postprandial glycemia as well as a standard bolus in children and adults using insulin pump therapy. BMJ Open Diabetes Research and Care, 2014, 2, e000050.	1.2	17
57	Performance Limitations Arising in Closed Loop Control of Blood Glucose in Type 1 Diabetes. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2014, 47, 2082-2087.	0.4	2
58	Both Dietary Protein and Fat Increase Postprandial Glucose Excursions in Children With Type 1 Diabetes, and the Effect Is Additive. Diabetes Care, 2013, 36, 3897-3902.	4.3	172
59	A diabetes awareness campaign prevents diabetic ketoacidosis in children at their initial presentation with type 1 diabetes. Pediatric Diabetes, 2012, 13, 647-651.	1.2	89
60	In children using intensive insulin therapy, a 20â€g variation in carbohydrate amount significantly impacts on postprandial glycaemia. Diabetic Medicine, 2012, 29, e21-4.	1.2	65
61	Hitting the Dartboard from 40,000 Feet: A Better Chance with Your Eyes Open!. Diabetes Technology and Therapeutics, 2011, 13, 1075-1076.	2.4	1
62	Changes in Altitude Cause Unintended Insulin Delivery From Insulin Pumps. Diabetes Care, 2011, 34, 1932-1933.	4.3	53
63	Children and adolescents on intensive insulin therapy maintain postprandial glycaemic control without precise carbohydrate counting. Diabetic Medicine, 2009, 26, 279-285.	1.2	70
64	Influence of and Optimal Insulin Therapy for a Low–Glycemic Index Meal in Children With Type 1 Diabetes Receiving Intensive Insulin Therapy. Diabetes Care, 2008, 31, 1485-1490.	4.3	57
65	Advances in understanding corticotrophin-releasing hormone gene expression. Frontiers in Bioscience - Landmark, 2007, 12, 581.	3.0	25
66	Novel glucocorticoid and cAMP interactions on the CRH gene promoter. Molecular and Cellular Endocrinology, 2002, 194, 19-28.	1.6	77
67	Placental Cortieotrophin-releasing Hormone, Local Effects and Fetomaternal Endocrinology. Stress, 2001, 4, 219-233.	0.8	25
68	Snapshot of CGM metrics in adolescents and adults achieving target HbA1c versus those not meeting target HbA1c Diabetes Technology and Therapeutics, 0, , .	2.4	0
69	Severe Graves' disease presenting with hepatic dysfunction in a 2â€yearâ€old child. Journal of Paediatrics and Child Health, 0, , .	0.4	0