Jörg Weissmüller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6682246/publications.pdf

Version: 2024-02-01

215 papers

12,357 citations

23567 58 h-index 29157

222 all docs 222 docs citations

times ranked

222

7432 citing authors

g-index

#	Article	IF	CITATIONS
1	Evolution of length scales and of chemical heterogeneity during primary and secondary dealloying. Acta Materialia, 2022, 222, 117424.	7.9	9
2	Giant compliance and spontaneous buckling of beams containing mobile solute atoms. Acta Materialia, 2022, 227, 117696.	7.9	1
3	Promoting Effect of the Residual Silver on the Electrocatalytic Oxidation of Methanol and Its Intermediates on Nanoporous Gold. ACS Catalysis, 2022, 12, 4415-4429.	11.2	14
4	Scaling behavior of stiffness and strength of hierarchical network nanomaterials. Science, 2021, 371, 1026-1033.	12.6	88
5	Imaging the deformation-induced accumulation of defects in nanoporous gold. Materials Research Letters, 2021, 9, 359-365.	8.7	3
6	Nanoporous gold-polypyrrole hybrid electrochemical actuators with tunable elasticity. Acta Materialia, 2021, 212, 116852.	7.9	11
7	On factors defining the mechanical behavior of nanoporous gold. Acta Materialia, 2021, 215, 116979.	7.9	21
8	Datasets for the microstructure of nanoscale metal network structures and for its evolution during coarsening. Data in Brief, 2020, 29, 105030.	1.0	8
9	Thermally Driven Ag–Au Compositional Changes at the Ligament Surface in Nanoporous Gold: Implications for Electrocatalytic Applications. ACS Applied Nano Materials, 2020, 3, 2197-2206.	5 . O	11
10	Nanoporousâ€Goldâ€Polypyrrole Hybrid Materials for Millimeterâ€Sized Free Standing Actuators. Advanced Materials Interfaces, 2020, 7, 2001415.	3.7	15
11	Stress-charge coupling coefficient for thin-film polypyrrole actuators – Investigation of capacitive ion exchange in the oxidized state. Electrochimica Acta, 2019, 318, 504-512.	5. 2	16
12	Mass Transport in Porous Electrodes Studied by Scanning Electrochemical Microscopy: Example of Nanoporous Gold. ChemElectroChem, 2019, 6, 3160-3166.	3.4	14
13	Surface-to-Volume Ratio Drives Photoelelectron Injection from Nanoscale Gold into Electrolyte. ACS Catalysis, 2019, 9, 3366-3374.	11.2	26
14	Adsorption–strain coupling at solid surfaces. Current Opinion in Chemical Engineering, 2019, 24, 45-53.	7.8	9
15	Surface-driven actuation: Sign reversal under load and surface load-memory effect. Physical Review Materials, 2019, 3, .	2.4	12
16	Topology evolution during coarsening of nanoscale metal network structures. Physical Review Materials, $2019, 3, .$	2.4	36
17	3D stochastic bicontinuous microstructures: Generation, topology and elasticity. Acta Materialia, 2018, 149, 326-340.	7.9	146
18	Mechanochemistry breaks with expectations. Nature Catalysis, 2018, 1, 238-239.	34.4	6

#	Article	IF	CITATIONS
19	Electrocapillary Coupling at Metal Surfaces from First Principles: On the Impact of Excess Charge on Surface Stress and Relaxation. Langmuir, 2018, 34, 4920-4928.	3.5	5
20	Oxygen Adsorption and Low-Temperature CO Oxidation on a Nanoporous Au Catalyst: Reaction Mechanism and Foreign Metal Effects. Topics in Catalysis, 2018, 61, 446-461.	2.8	10
21	Dealloying-based metal-polymer composites for biomedical applications. Scripta Materialia, 2018, 146, 290-294.	5.2	59
22	Dealloyed nanoporous materials with interface-controlled behavior. MRS Bulletin, 2018, 43, 14-19.	3.5	92
23	Mechanical response of nanoporous metals: A story of size, surface stress, and severed struts. MRS Bulletin, 2018, 43, 35-42.	3.5	81
24	Open porous dealloying-based biomaterials as a novel biomaterial platform. Materials Science and Engineering C, 2018, 88, 95-103.	7.3	60
25	Measurement of local crystal lattice strain variations in dealloyed nanoporous gold. Materials Research Letters, 2018, 6, 84-92.	8.7	10
26	Verifying Larché–Cahn elasticity, a milestone of 20th-century thermodynamics. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10914-10919.	7.1	16
27	Nanoporous magnesium. Nano Research, 2018, 11, 6428-6435.	10.4	46
28	Nanoporous Copper-Nickel – Macroscopic bodies of a strong and deformable nanoporous base metal by dealloying. Scripta Materialia, 2018, 155, 119-123.	5.2	20
29	Synthesis of uniform bulk nanoporous palladium with tunable structure. Electrochimica Acta, 2018, 285, 60-69.	5.2	19
30	Elastocapillarity in nanopores: Sorption strain from the actions of surface tension and surface stress. Physical Review Materials, 2018, 2, .	2.4	18
31	Electrochemical Actuation of Hybrid Materials Made from Nanoporous Metals and Electrically Conductive Polymers. ECS Meeting Abstracts, 2018, MA2018-01, 1989-1989.	0.0	0
32	(Invited)ÂMechano-Chemical Coupling at Interfaces in Novel Hybrid Materials. ECS Meeting Abstracts, 2018, MA2018-01, 1983-1983.	0.0	0
33	Silver-rich clusters in nanoporous gold. Materials Research Letters, 2017, 5, 314-321.	8.7	59
34	Electrochemical tuning of the optical properties of nanoporous gold. Scientific Reports, 2017, 7, 44139.	3.3	28
35	A nanoporous gold-polypyrrole hybrid nanomaterial for actuation. Sensors and Actuators B: Chemical, 2017, 248, 622-629.	7.8	30
36	Actuation by hydrogen electrosorption in hierarchical nanoporous palladium. Philosophical Magazine, 2017, 97, 1571-1587.	1.6	42

#	Article	IF	CITATIONS
37	Nanoporous Gold by Alloy Corrosion: Method-Structure-Property Relationships. Journal of the Electrochemical Society, 2017, 164, C194-C200.	2.9	52
38	Electrocatalytic methanol oxidation with nanoporous gold: microstructure and selectivity. Nanoscale, 2017, 9, 17839-17848.	5.6	57
39	Plastic Poisson's Ratio of Nanoporous Metals: A Macroscopic Signature of Tension–Compression Asymmetry at the Nanoscale. Nano Letters, 2017, 17, 6258-6266.	9.1	55
40	Semiordered Hierarchical Metallic Network for Fast and Large Charge-Induced Strain. Nano Letters, 2017, 17, 4774-4780.	9.1	17
41	Dealloying-based interpenetrating-phase nanocomposites matching the elastic behavior of human bone. Scientific Reports, 2017, 7, 20.	3.3	84
42	A comparative study of alcohol oxidation over nanoporous gold in gas and liquid phase. Journal of Catalysis, 2017, 353, 99-106.	6.2	40
43	Nanoporous Metals with Structural Hierarchy: A Review. Advanced Engineering Materials, 2017, 19, 1700389.	3.5	103
44	Local flow stresses in interpenetrating-phase composites based on nanoporous gold — In situ diffraction. Scripta Materialia, 2017, 127, 151-155.	5.2	4
45	Surface excess elasticity of gold: Ab initio coefficients and impact on the effective elastic response of nanowires. Acta Materialia, 2017, 124, 468-477.	7.9	32
46	On the origin of the anomalous compliance of dealloying-derived nanoporous gold. Scripta Materialia, 2017, 130, 74-77.	5.2	25
47	On the impact of capillarity for strength at the nanoscale. Nature Communications, 2017, 8, 1976.	12.8	43
48	X-ray studies of nanoporous gold: Powder diffraction by large crystals with small holes. Physical Review Materials, 2017, 1 , .	2.4	15
49	Piezoelectric Gold: Strong Chargeâ€Load Response in a Metalâ€Based Hybrid Nanomaterial. Advanced Functional Materials, 2016, 26, 5174-5181.	14.9	51
50	Electrochemically Tunable Resistance of Nanoporous Platinum Produced by Dealloying. Langmuir, 2016, 32, 7757-7764.	3.5	15
51	Fast and Reversible Actuation of Metallic Muscles Composed of Nickel Nanowireâ€Forest. Advanced Materials, 2016, 28, 5315-5321.	21.0	30
52	Nanoporous Gold—Testing Macro-scale Samples to Probe Small-scale Mechanical Behavior. Materials Research Letters, 2016, 4, 27-36.	8.7	121
53	Elastic and plastic Poisson's ratios of nanoporous gold. Scripta Materialia, 2016, 110, 65-69.	5.2	61
54	Less Noble or More Noble: How Strain Affects the Binding of Oxygen on Gold. Angewandte Chemie - International Edition, 2015, 54, 12981-12985.	13.8	26

#	Article	IF	Citations
55	Anomalous compliance and early yielding of nanoporous gold. Acta Materialia, 2015, 93, 144-155.	7.9	116
56	Nanoporous-gold-based composites: toward tensile ductility. NPG Asia Materials, 2015, 7, e187-e187.	7.9	57
57	Porous Gold with a Nestedâ€Network Architecture and Ultrafine Structure. Advanced Functional Materials, 2015, 25, 2530-2536.	14.9	65
58	Electrocapillary coupling at rough surfaces. Physical Chemistry Chemical Physics, 2015, 17, 11725-11731.	2.8	19
59	Ab-initio modeling of electromechanical coupling at Si surfaces. Journal of Applied Physics, 2014, 116, 073507.	2.5	4
60	Crack Mitigation during Dealloying of Au ₂₅ <scp>C</scp> u ₇₅ . Advanced Engineering Materials, 2014, 16, 389-398.	3.5	37
61	Effective medium model for the spectral properties of nanoporous gold in the visible. Applied Physics Letters, 2014, 105, .	3.3	27
62	Mechanical modulation of reaction rates in electrocatalysis. Journal of Catalysis, 2014, 309, 351-361.	6.2	59
63	Electrocapillary Coupling during Electrosorption. Langmuir, 2014, 30, 10522-10530.	3.5	29
64	Switchable imbibition in nanoporous gold. Nature Communications, 2014, 5, 4237.	12.8	102
65	Wrinkling of Atomic Planes in Ultrathin Au Nanowires. Nano Letters, 2014, 14, 4859-4866.	9.1	35
66	Electrical stiffness modulationâ€"confirming the impact of surface excess elasticity on the mechanics of nanomaterials. Acta Materialia, 2014, 76, 272-280.	7.9	54
67	Scaling laws of nanoporous metals under uniaxial compression. Acta Materialia, 2014, 67, 252-265.	7.9	140
68	Composites of Nanoporous Gold and Polymer. Advanced Materials, 2013, 25, 1280-1284.	21.0	91
69	Electrocapillary coupling coefficients for hydrogen electrosorption on palladium. Acta Materialia, 2013, 61, 6301-6309.	7.9	31
70	Hierarchical Nested-Network Nanostructure by Dealloying. ACS Nano, 2013, 7, 5948-5954.	14.6	188
71	Sign-inverted response of aluminum work function to tangential strain. Journal of Physics Condensed Matter, 2013, 25, 445012.	1.8	3
72	Catalytic activity of nanostructured Au: Scale effects versus bimetallic/bifunctional effects in low-temperature CO oxidation on nanoporous Au. Beilstein Journal of Nanotechnology, 2013, 4, 111-128.	2.8	43

#	Article	IF	CITATIONS
73	On the mechanism of electrochemical modulation of plasmonic resonances. Applied Physics Letters, 2012, 101, .	3.3	9
74	Ab initioinvestigation of surface stress response to charging of transition and noble metals. Physical Review B, 2012, 85, .	3.2	34
75	Sign-inversion of charging-induced variation of electrical resistance of nanoporous platinum. Journal of Applied Physics, 2012, 112, .	2.5	12
76	Grain rotation by dislocation climb in a finite-size grain boundary. Acta Materialia, 2012, 60, 7064-7077.	7.9	15
77	Electrically Tunable Nanoporous Carbon Hybrid Actuators. Advanced Functional Materials, 2012, 22, 3029-3034.	14.9	39
78	Macroscopic 3D Nanographene with Dynamically Tunable Bulk Properties. Advanced Materials, 2012, 24, 5083-5087.	21.0	111
79	On the Role of Residual Ag in Nanoporous Au Catalysts for CO Oxidation: A Combined Microreactor and TAP Reactor Study. ChemCatChem, 2012, 4, 251-259.	3.7	40
80	Dynamic electro-chemo-mechanical analysis during cyclic voltammetry. Physical Chemistry Chemical Physics, 2011, 13, 17313.	2.8	38
81	Impact of surface mechanics on the reactivity of electrodes. Physical Chemistry Chemical Physics, 2011, 13, 2114-2117.	2.8	31
82	Dynamic studies of CO oxidation on nanoporous Au using a TAP reactor. Journal of Catalysis, 2011, 278, 219-227.	6.2	36
83	A Material with Electrically Tunable Strength and Flow Stress. Science, 2011, 332, 1179-1182.	12.6	165
84	Kinematics of polycrystal deformation by grain boundary sliding. Acta Materialia, 2011, 59, 4366-4377.	7.9	37
85	Line stress of step edges at crystal surfaces. Surface Science, 2011, 605, 947-957.	1.9	13
86	Electrochemical restructuring of plasmonic metamaterials. Applied Physics Letters, 2011, 98, 013112.	3.3	10
87	Work hardening and inherent plastic instability of nanocrystalline metals. Physica Status Solidi - Rapid Research Letters, 2010, 4, 130-132.	2.4	17
88	Electrochemical Modulation of Photonic Metamaterials. Advanced Materials, 2010, 22, 5173-5177.	21.0	28
89	Bulk Nanoporous Metal for Actuation. Advanced Engineering Materials, 2010, 12, 714-723.	3.5	112
90	Mechanics of corrugated surfaces. Journal of the Mechanics and Physics of Solids, 2010, 58, 1552-1566.	4.8	31

#	Article	IF	CITATIONS
91	Deformation of solids with nanoscale pores by the action of capillary forces. Acta Materialia, 2010, 58, 1-13.	7.9	69
92	Microstrain in nanocrystalline solids under load by virtual diffraction. Europhysics Letters, 2010, 89, 66002.	2.0	16
93	Adsorption-driven tuning of the electrical resistance of nanoporous gold. Journal of Applied Physics, 2010, 108, .	2.5	34
94	Different measures for the capillarity-driven deformation of a nanoporous metal. Europhysics Letters, 2010, 89, 66001.	2.0	31
95	Comment on "Influence of random roughness on cantilever curvature sensitivity―[Appl. Phys. Lett. 96, 041912 (2010)]. Applied Physics Letters, 2010, 96, 226101.	3.3	4
96	Nanoporous Auâ°'Pt Alloys As Large Strain Electrochemical Actuators. Nano Letters, 2010, 10, 187-194.	9.1	286
97	Reply to the â€~Comment on "Response of the potential of a gold electrode to elastic strainâ€â€™ by Ã. Horváth, G. Nagy and R. Schiller, Phys. Chem. Chem. Phys., 2010, 12, DOI: 10.1039/b925108d. Physical Chemistry Chemical Physics, 2010, 12, 7291.	2.8	6
98	Electrocapillary maximum and potential of zero charge of carbon aerogel. Physical Chemistry Chemical Physics, 2010, 12, 7580.	2.8	44
99	Electro-Modulation of Plasmonic and Photonic-Metamaterial Structures. , 2010, , .		0
100	Tuning and monitoring of quantum dot growth by an <i>in situ</i> cantilever. Physical Review B, 2009, 79, .	3.2	2
101	Surface Chemistry in Nanoscale Materials. Materials, 2009, 2, 2404-2428.	2.9	119
102	In situ X-ray diffraction study of Co/Pd multilayers grown on Ta substrate during hydrogen loading. Scripta Materialia, 2009, 60, 756-759.	5.2	8
103	A synchrotron tensile test setup for nanocrystalline thin films. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 1795-1798.	1.8	4
104	Surface-chemistry-driven actuation in nanoporousÂgold. Nature Materials, 2009, 8, 47-51.	27.5	488
105	Atomistic origin of microstrain broadening in diffraction data of nanocrystalline solids. Acta Materialia, 2009, 57, 1648-1654.	7.9	79
106	Deforming nanoporous metal: Role of lattice coherency. Acta Materialia, 2009, 57, 2665-2672.	7.9	198
107	Deformation mechanisms in nanocrystalline palladium at large strains. Acta Materialia, 2009, 57, 3391-3401.	7.9	122
108	Nanoporous Metals by Alloy Corrosion: Formation and Mechanical Properties. MRS Bulletin, 2009, 34, 577-586.	3.5	264

#	Article	IF	Citations
109	Response of the potential of a gold electrode to elastic strain. Physical Chemistry Chemical Physics, 2009, 11, 9008.	2.8	34
110	Micromagnetic structures of nanocrystalline ferromagnetic materials - comparison of simulation and experiment. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 1774-1778.	1.8	14
111	Instabilities of core–shell heterostructured cylinders due to diffusions and epitaxy: Spheroidization and blossom of nanowires. Journal of the Mechanics and Physics of Solids, 2008, 56, 1831-1851.	4.8	37
112	Adsorbate effects on the surface stress–charge response of platinum electrodes. Electrochimica Acta, 2008, 53, 2757-2767.	5.2	89
113	Reply to â€~Comment on "A note on surface stress and surface tension and their interrelation via Shuttleworth's equation and the Lippmann equation―by D. Kramer and J. Weissmüller [Surf. Sci. 601 (2007) 3042]' by V.A. Marichev. Surface Science, 2008, 602, 1133-1134.	1.9	6
114	Sign-inverted surface stress-charge response in nanoporous gold. Surface Science, 2008, 602, 3588-3594.	1.9	109
115	Magnetic-field-dependent small-angle neutron scattering on random anisotropy ferromagnets. Reports on Progress in Physics, 2008, 71, 066501.	20.1	78
116	Validating grain size analysis from X-ray line broadening: A virtual experiment. Scripta Materialia, 2008, 59, 15-18.	5.2	63
117	Small-Angle Neutron Scattering of Nanocrystalline Terbium with Random Paramagnetic Susceptibility. Physical Review Letters, 2008, 100, 227202.	7.8	9
118	Surface Stress-Charge Response of a (111)-Textured Gold Electrode under Conditions of Weak Ion Adsorption. Langmuir, 2008, 24, 8561-8567.	3.5	60
119	Cantilever Bending with Rough Surfaces. Physical Review Letters, 2008, 101, 146102.	7.8	50
120	Reversible relaxation at charged metal surfaces: An ab initio study. Europhysics Letters, 2008, 84, 13002.	2.0	25
121	Ab initio study of surface stress response to charging. Europhysics Letters, 2007, 78, 13001.	2.0	73
122	Diffusional decomposition of supersaturated solid solutions at grain boundaries. International Journal of Materials Research, 2007, 98, 553-561.	0.3	2
123	Synthesis, Characterization and Magnetic Interactions Study of Îμ-Fe3N–CrN Nanorods. Journal of Nanoscience and Nanotechnology, 2007, 7, 1836-1840.	0.9	10
124	Phase equilibria and phase diagrams of nanoscaled systems. Journal of Alloys and Compounds, 2007, 434-435, 286-289.	5.5	25
125	Mössbauer and magnetic studies of MFe2O4(M = Co, Ni) nanoparticles. Hyperfine Interactions, 2007, 153-159.	165 0.5	33
126	Reconstructing a Nanoporous Metal in Three Dimensions: An Electron Tomography Study of Dealloyed Gold Leaf. Advanced Engineering Materials, 2007, 9, 535-541.	3.5	152

#	Article	IF	CITATIONS
127	Macroscopically Strong Nanoporous Pt Prepared by Dealloying. Advanced Engineering Materials, 2007, 9, 849-854.	3.5	58
128	A note on surface stress and surface tension and their interrelation via Shuttleworth's equation and the Lippmann equation. Surface Science, 2007, 601, 3042-3051.	1.9	123
129	Grain boundary segregation, stress and stretch: Effects on hydrogen absorption in nanocrystalline palladium. Acta Materialia, 2007, 55, 1241-1254.	7.9	74
130	Temperature dependence of dipole-field scattering in Nanoperm. Journal of Magnetism and Magnetic Materials, 2007, 316, 448-450.	2.3	0
131	Tuneable magnetic susceptibility of nanocrystalline palladium. Applied Physics Letters, 2006, 88, 253103.	3.3	27
132	Dipolar correlations in a nanocomposite: A neutron scattering study of NanopermFe89Zr7B3Cu. Physical Review B, 2006, 74, .	3.2	28
133	Small angle neutron scattering investigations of spin disorder in nanocomposite soft magnets. Journal of Alloys and Compounds, 2006, 423, 31-36.	5.5	1
134	Structural Relaxation in Charged Metal Surfaces and Cluster Ions. Small, 2006, 2, 1497-1503.	10.0	59
135	Charge-Dependent Magnetization in Nanoporous Pd-Co Alloys. IEEE Transactions on Magnetics, 2006, 42, 3617-3619.	2.1	24
136	HRTEM observation of misfit dislocations at non-faceted Al–Pb interfaces. Philosophical Magazine Letters, 2006, 86, 623-632.	1.2	11
137	Approaching the theoretical strength in nanoporous Au. Applied Physics Letters, 2006, 89, 061920.	3.3	286
138	A neutron-scattering investigation of the magnetic structure and magnetic excitations in nanocrystalline Tb. Journal of Applied Physics, 2006, 99, 08F502.	2.5	1
139	Volume Change during the Formation of Nanoporous Gold by Dealloying. Physical Review Letters, 2006, 97, 035504.	7.8	386
140	Deforming Nanocrystalline Metals: New Insights, New Puzzles. Advanced Engineering Materials, 2005, 7, 202-207.	3.5	82
141	Charge induced Variation of the Magnetization in Nanoporous Ni-Pd. Materials Research Society Symposia Proceedings, 2005, 876, 1.	0.1	10
142	Variation of the Surface Stressâ^'Charge Coefficient of Platinum with Electrolyte Concentration. Langmuir, 2005, 21, 4604-4609.	3.5	51
143	Dipole-field–induced spin disorder in a nanocomposite soft magnet. Europhysics Letters, 2005, 72, 249-255.	2.0	13
144	Neutron scattering and modeling of dipole-field-induced spin disorder in Nanoperm. Applied Physics Letters, 2005, 87, 202509.	3.3	10

#	Article	IF	CITATIONS
145	Ordered arrays of highly oriented single-crystal semiconductor nanoparticles on silicon substrates. Nanotechnology, 2005, 16, 1892-1898.	2.6	24
146	Balance of Force at Curved Solid Metalâ^'Liquid Electrolyte Interfaces. Langmuir, 2005, 21, 4592-4603.	3.5	60
147	Reversible Strain in Porous Metals Charged in Electrolytes. Materials Research Society Symposia Proceedings, 2005, 876, 1.	0.1	3
148	Spin structure of nanocrystalline terbium. Physical Review B, 2004, 69, .	3.2	43
149	HRTEM observation of interfacial dislocations at faceted Al–Pb interfaces. Philosophical Magazine Letters, 2004, 84, 673-683.	1.2	46
150	Two-phase equilibrium in small alloy particles. Scripta Materialia, 2004, 51, 813-818.	5.2	66
151	Mössbauer Study of Nanocrystalline ε-Fe3-xCoxN System. Hyperfine Interactions, 2004, 156/157, 51-56.	0.5	28
152	Characteristic magnetic length-scales in Vitroperm - Combining Kerr microscopy and small-angle neutron scattering. Physica Status Solidi A, 2004, 201, 3354-3360.	1.7	17
153	Spin-glass-like transition in interacting MnFe2O4 nanoparticles. Physica Status Solidi (B): Basic Research, 2004, 241, 1589-1592.	1.5	18
154	Effect of La, B doping on the electrical resistivity and magnetic susceptibility of nanocrystalline vanadium nitride. Journal of Applied Physics, 2004, 96, 688-695.	2.5	19
155	Surface-Stress Induced Macroscopic Bending of Nanoporous Gold Cantilevers. Nano Letters, 2004, 4, 793-796.	9.1	382
156	Deformation twinning in nanocrystalline Pd. Philosophical Magazine Letters, 2004, 84, 321-334.	1.2	90
157	Electronic properties of 4-nm FePt particles. Physical Review B, 2003, 67, .	3.2	101
158	Microstructure evolution during rolling of inert-gas condensed palladium. Scripta Materialia, 2003, 49, 637-644.	5.2	124
159	A comparison of torque-strengths in micromagnetics. Journal of Magnetism and Magnetic Materials, 2003, 258-259, 11-14.	2.3	0
160	Durchstimmbare Dehnung in Platin. Physik in Unserer Zeit, 2003, 34, 155-156.	0.0	1
161	Range of Magnetic Correlations in Nanocrystalline Soft Magnets. Physical Review Letters, 2003, 91, 267204.	7.8	73
162	Internal Friction Study of the Size-Dependent Melting of Pb Inclusions in an Al Matrix. Solid State Phenomena, 2003, 94, 41-44.	0.3	6

#	Article	IF	Citations
163	Domain formation and long-range spin disorder in Vitroperm. Europhysics Letters, 2003, 64, 43-49.	2.0	26
164	Charge-Induced Reversible Strain in a Metal. Science, 2003, 300, 312-315.	12.6	485
165	The impact of particle morphology on the melting characteristics of matrix-embedded Pb nanocrystals. Philosophical Magazine Letters, 2003, 83, 511-523.	1.2	45
166	Comment on "Lattice Contraction and Surface Stress of fcc Nanocrystals― Journal of Physical Chemistry B, 2002, 106, 889-890.	2.6	10
167	Thermodynamics of Nanocrystalline Solids. , 2002, , 1-39.		4
168	Magnetic Microstructure and Properties of the Nanocrystalline Hard Magnet Terbium. Physica Status Solidi A, 2002, 189, 495-498.	1.7	4
169	Measurement of a Magnetic-Field Dependent Correlation Length in Nanocrystalline Ni Using Small-Angle Neutron Scattering. Physica Status Solidi A, 2002, 189, 509-513.	1.7	12
170	Magnetic Properties of Nanosize Lead Hexaferrite Particles. Physica Status Solidi A, 2002, 189, 685-689.	1.7	5
171	Synthesis and Magnetic Studies of Nanocrystalline Nickel Nitride Material. Physica Status Solidi A, 2002, 189, 691-695.	1.7	54
172	Electronic and Magnetic Properties of Monodispersed FePt Nanoparticles. Advanced Materials, 2002, 14, 24-27.	21.0	66
173	Magnetic properties of MnFe2O4 nanoparticles. Journal of Magnetism and Magnetic Materials, 2002, 242-245, 617-620.	2.3	56
174	A lower bound for the volume-averaged mean-square magnetostatic stray field. European Physical Journal B, 2002, 29, 533-540.	1.5	11
175	On the influence of anisotropy on the magnetic small-angle neutron scattering of superparamagnetic particles. European Physical Journal B, 2002, 26, 57-65.	1.5	3
176	Analysis of the small-angle neutron scattering of nanocrystalline ferromagnets using a micromagnetics model. Physical Review B, 2001, 63, .	3.2	79
177	Nanocrystalline materials: a way to solids with tunable electronic structures and properties?. Acta Materialia, 2001, 49, 737-745.	7.9	160
178	Structural evolution and phase formation in cold-rolled aluminum–nickel multilayers. Acta Materialia, 2001, 49, 1139-1151.	7.9	97
179	Magnetic small-angle neutron scattering by nanocrystalline terbium. Scripta Materialia, 2001, 44, 2357-2361.	5. 2	3
180	Chemo-elastic equilibrium in nanocrystalline Pd-Au-H. Scripta Materialia, 2001, 44, 1899-1903.	5.2	9

#	Article	IF	CITATIONS
181	Comment on "Magnetic Correlations in Nanostructured Ferromagnets― Physical Review Letters, 2001, 87, 149701.	7.8	6
182	On the size dependence of the critical point of nanoscale interstitial solid solutions. Philosophical Magazine Letters, 2000, 80, 411-418.	1.2	50
183	Exchange-stiffness constant in cold-worked and nanocrystalline Ni measured by elastic small-angle neutron scattering. Journal of Applied Physics, 2000, 87, 5953-5955.	2.5	34
184	Measuring the exchange-stiffness constant of nanocrystalline solids by elastic small-angle neutron scattering. Philosophical Magazine Letters, 2000, 80, 785-792.	1.2	29
185	Lattice Constants of Solid Solution Microstructures: The Case of Nanocrystalline Pd-H. Physical Review Letters, 1999, 82, 213-216.	7.8	54
186	Small-angle neutron scattering by the magnetic microstructure of nanocrystalline ferromagnets near saturation. Journal of Research of the National Institute of Standards and Technology, 1999, 104, 261.	1.2	35
187	Determination of local structure in nanophase palladium by x-ray-absorption spectroscopy. Physical Review B, 1998, 57, 3365-3374.	3.2	27
188	A general theory of curved deformable interfaces in solids at equilibrium. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1998, 78, 1093-1109.	0.6	775
189	Kinetics of gallium films confined at grain boundaries. Physical Review B, 1998, 58, 2142-2149.	3.2	27
190	Segregation-Induced Instability of Nanocrystalline Line Compounds. Physical Review Letters, 1998, 81, 1114-1117.	7.8	10
191	Mean stresses in microstructures due to interface stresses: A generalization of a capillary equation for solids. Acta Materialia, 1997, 45, 1899-1906.	7.9	206
192	Small-angle scattering by grain boundaries in nanocrystalline solids: A computer simulation study. Scripta Materialia, 1997, 37, 1685-1691.	5. 2	3
193	Mobility of Ga confined in nanostructured alumina. Physica B: Condensed Matter, 1997, 234-236, 173-174.	2.7	12
194	Local Structure and Size Effects in Nanophase Palladium. European Physical Journal Special Topics, 1997, 7, C2-979-C2-981.	0.2	1
195	Relating magnetic properties and microstructure in inert-gas condensed Y-fe alloys. Scripta Materialia, 1996, 7, 161-178.	0.5	3
196	Precipitation in nanocrystalline Al-Ag prepared by inert gas condensation and by mechanical alloying. Scripta Materialia, 1996, 35, 647-653.	5. 2	2
197	Local structure and size effects in nanophase palladium: An X-ray absorption study. Physics Letters, Section A: General, Atomic and Solid State Physics, 1995, 207, 397-403.	2.1	30
198	Grain-boundary atomic structure in nanocrystalline palladium from x-ray atomic distribution functions. Physical Review B, 1995, 52, 7076-7093.	3.2	104

#	Article	IF	CITATIONS
199	The vibrational excitations and the position of hydrogen in nanocrystalline palladium. Journal of Physics Condensed Matter, 1995, 7, 219-230.	1.8	51
200	X-Ray Absorption Study of Local Structure in Nanophase Palladium. Materials Science Forum, 1995, 195, 67-72.	0.3	2
201	Hydrogen-induced internal friction in nanocrystalline palladium. Journal of Alloys and Compounds, 1995, 231, 337-342.	5.5	7
202	Atomic structure of nanocrystalline metals studied by diffraction techniques and EXAFS. Scripta Materialia, 1995, 6, 105-114.	0.5	74
203	Characterization of nanocrystalline palladium by x-ray atomic density distribution functions. Scripta Materialia, 1995, 6, 567-570.	0.5	24
204	In vacuo X-ray diffraction study of atomic short-range order in inert-gas-condensed Fe. Scripta Materialia, 1995, 6, 593-596.	0.5	18
205	Inelastic neutron scattering study of hydrogen in nanocrystalline Pd. Scripta Materialia, 1995, 6, 555-558.	0.5	12
206	Magnetic properties of mechanically alloyed Fe-Ni-Ag. Scripta Metallurgica Et Materialia, 1995, 33, 1717-1724.	1.0	10
207	Some basic notions on nanostructured solids. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1994, 179-180, 102-107.	5.6	36
208	Alloy thermodynamics in nanostructures. Journal of Materials Research, 1994, 9, 4-7.	2.6	163
209	Alloy effects in nanostructures. Scripta Materialia, 1993, 3, 261-272.	0.5	490
210	Atomic structure and thermal stability of nanostructured Y-Fe alloys. Scripta Materialia, 1992, 1, 439-447.	0.5	99
211	Reduced short-range order in amorphous silicon-gold alloys. Journal of Non-Crystalline Solids, 1992, 142, 70-80.	3.1	18
212	Noncrystalline Solids Prepared by Compacting Nanometer â€" Sized Particles. Materials Research Society Symposia Proceedings, 1990, 195, 617.	0.1	0
213	Short-range disordered Siî—, Au alloy - evidence for a new phase?. Physics Letters, Section A: General, Atomic and Solid State Physics, 1990, 145, 130-136.	2.1	23
214	A study of amorphous Fe79B21 alloy powders produced by chemical reduction. Journal of Non-Crystalline Solids, 1990, 116, 247-252.	3.1	23
215	Determination of localized state distributions in amorphous semiconductors from excess charge carrier thermalization. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1985, 51, 349-361.	0.6	7