Wendelin J Stark

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6681934/wendelin-j-stark-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

60 116 15,077 247 h-index g-index citations papers 16,288 6.64 265 7.4 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
247	Anhydrous calcium phosphate crystals stabilize DNA for dry storage <i>Chemical Communications</i> , 2022 ,	5.8	1
246	Integrating DNA Encapsulates and Digital Microfluidics for Automated Data Storage in DNA <i>Small</i> , 2022 , e2107381	11	3
245	Rapid Identification of SARS-CoV-2 Variants of Concern Using a Portable PCR Platform. <i>Analytical Chemistry</i> , 2021 ,	7.8	4
244	Increased Longevity and Pumping Performance of an Injection Molded Soft Total Artificial Heart. <i>Soft Robotics</i> , 2021 , 8, 588-593	9.2	О
243	Ecotoxicological Assessment of DNA-Tagged Silica Particles for Environmental Tracing. <i>Environmental Science & Environmental S</i>	10.3	1
242	Suspension of Amorphous Calcium Phosphate Nanoparticles Impact Commitment of Human Adipose-Derived Stem Cells In Vitro. <i>Biology</i> , 2021 , 10,	4.9	1
241	Preparation of Functionalized Carbon-Coated Cobalt Nanoparticles with Sulfonated Arene Derivatives, a Study on Surface Functionalization and Stability. <i>Chemistry - A European Journal</i> , 2021 , 27, 4108-4114	4.8	2
240	One-Step Photolithographic Surface Patterning of Nanometer-Thick Gold Surfaces by Using a Commercial DLP Projector and the Fabrication of a Microheater. <i>Industrial & Description of Section 2020</i> , 59, 12048-12055	3.9	O
239	Genomic Encryption of Digital Data Stored in Synthetic DNA. <i>Angewandte Chemie</i> , 2020 , 132, 8554-8558	33.6	1
238	Genomic Encryption of Digital Data Stored in Synthetic DNA. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 8476-8480	16.4	6
237	Stabilizing synthetic DNA for long-term data storage with earth alkaline salts. <i>Chemical Communications</i> , 2020 , 56, 3613-3616	5.8	18
236	3D microtissue-derived human stem cells seeded on electrospun nanocomposites under shear stress: Modulation of gene expression. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2020 , 102, 103481	4.1	5
235	A DNA-of-things storage architecture to create materials with embedded memory. <i>Nature Biotechnology</i> , 2020 , 38, 39-43	44.5	50
234	Reading and writing digital data in DNA. <i>Nature Protocols</i> , 2020 , 15, 86-101	18.8	32
233	DNA synthesis for true random number generation. <i>Nature Communications</i> , 2020 , 11, 5869	17.4	13
232	Low cost DNA data storage using photolithographic synthesis and advanced information reconstruction and error correction. <i>Nature Communications</i> , 2020 , 11, 5345	17.4	21
231	Small-Size Polymerase Chain Reaction Device with Improved Heat Transfer and Combined Feedforward/Feedback Control Strategy. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 966	5 3:9 67	4 ⁴

(2018-2019)

230	Strategies of Immobilizing Cells in Whole-cell Microbial Biosensor Devices Targeted for Analytical Field Applications. <i>Analytical Sciences</i> , 2019 , 35, 839-847	1.7	7
229	Continuous Production of a Shelf-Stable Living Material as a Biosensor Platform. <i>Advanced Materials Technologies</i> , 2019 , 4, 1900266	6.8	6
228	Combining Data Longevity with High Storage Capacity Dayer-by-Layer DNA Encapsulated in Magnetic Nanoparticles. <i>Advanced Functional Materials</i> , 2019 , 29, 1901672	15.6	33
227	Safe One-Pot Synthesis of Fluorescent Carbon Quantum Dots from Lemon Juice for a Hands-On Experience of Nanotechnology. <i>Journal of Chemical Education</i> , 2019 , 96, 540-545	2.4	22
226	Hybrid nanocomposite as a chest wall graft with improved integration by adipose-derived stem cells. <i>Scientific Reports</i> , 2019 , 9, 10910	4.9	3
225	YestroSens, a field-portable S. cerevisiae biosensor device for the detection of endocrine-disrupting chemicals: Reliability and stability. <i>Biosensors and Bioelectronics</i> , 2019 , 146, 11171	0 ^{11.8}	6
224	DNA Barcode Quantification As a Robust Tool for Measuring Mixing Ratios in Two-Component Systems <i>ACS Applied Bio Materials</i> , 2019 , 2, 5062-5068	4.1	
223	Modification of silicone elastomers with Bioglass 45S5 increases in ovo tissue biointegration. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2019 , 107, 1180-1188	3.5	3
222	The light triggered dissolution of gold wires using potassium ferrocyanide solutions enables cumulative illumination sensing. <i>Sensors and Actuators B: Chemical</i> , 2019 , 282, 52-59	8.5	10
221	Cartilage/bone interface fabricated under perfusion: Spatially organized commitment of adipose-derived stem cells without medium supplementation. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2019 , 107, 1833-1843	3.5	8
220	Long-Term Performance of a Pneumatically Actuated Soft Pump Manufactured by Rubber Compression Molding. <i>Soft Robotics</i> , 2019 , 6, 206-213	9.2	4
219	Length-dependent DNA degradation kinetic model: Decay compensation in DNA tracer concentration measurements. <i>AICHE Journal</i> , 2019 , 65, 40-48	3.6	6
218	Nondestructive in-line sub-picomolar detection of magnetic nanoparticles in flowing complex fluids. <i>Scientific Reports</i> , 2018 , 8, 3491	4.9	16
217	Thermoresponsive Microspheres as Smart Pore Plugs: Self-Venting Clothing Membranes for Smart Outdoor Textiles. <i>Macromolecular Materials and Engineering</i> , 2018 , 303, 1700562	3.9	6
216	Cyclic uniaxial compression of human stem cells seeded on a bone biomimetic nanocomposite decreases anti-osteogenic commitment evoked by shear stress. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2018 , 83, 84-93	4.1	8
215	Water dispersible surface-functionalized platinum/carbon nanorattles for size-selective catalysis. <i>Chemical Science</i> , 2018 , 9, 362-367	9.4	9
214	Porous Polymer Membranes by Hard Templating 🛭 Review. <i>Advanced Engineering Materials</i> , 2018 , 20, 1700611	3.5	22
213	Selective Low-Energy Carbon Dioxide Adsorption Using Monodisperse Nitrogen-Rich Hollow Carbon Submicron Spheres. <i>Langmuir</i> , 2018 , 34, 30-35	4	17

212	Silica-Encapsulated DNA-Based Tracers for Aquifer Characterization. <i>Environmental Science & Environmental Science & Technology</i> , 2018 , 52, 12142-12152	10.3	27
211	Hydrogen as a Bio-Orthogonal Trigger for Spatiotemporally Controlled Caged Prodrug Activation. <i>Helvetica Chimica Acta</i> , 2018 , 101, e1800134	2	
210	Tomographic Reservoir Imaging with DNA-Labeled Silica Nanotracers: The First Field Validation. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	18
209	Direct synthesis of carbon quantum dots in aqueous polymer solution: one-pot reaction and preparation of transparent UV-blocking films. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 5187-5194	13	72
208	Facile and Efficient Removal of Tungsten Anions Using Lysine-Promoted Precipitation for Recycling High-Purity Tungsten. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 3141-3147	8.3	12
207	Stabilization of 2D Water Films in Porous Triple-Layer Membranes with a Hydrophilic Core: Cooling Textiles and Passive Evaporative Room Climate Control . <i>Advanced Engineering Materials</i> , 2017 , 19, 1700	0∮354	7
206	Protein Reduction and Dialysis-Free Work-Up through Phosphines Immobilized on a Magnetic Support: TCEP-Functionalized Carbon-Coated Cobalt Nanoparticles. <i>Chemistry - A European Journal</i> , 2017 , 23, 8585-8589	4.8	4
205	Efficient Recycling of Poly(lactic acid) Nanoparticle Templates for the Synthesis of Hollow Silica Spheres. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 4941-4947	8.3	14
204	Bioactive glass containing silicone composites for left ventricular assist device drivelines: role of Bioglass 45S5 particle size on mechanical properties and cytocompatibility. <i>Journal of Materials Science</i> , 2017 , 52, 9023-9038	4.3	11
203	Rapid Production of a Porous Cellulose Acetate Membrane for Water Filtration using Readily Available Chemicals. <i>Journal of Chemical Education</i> , 2017 , 94, 483-487	2.4	21
202	Highly elastomeric poly(3-hydroxyoctanoate) based natural polymer composite for enhanced keratinocyte regeneration. <i>International Journal of Polymeric Materials and Polymeric Biomaterials</i> , 2017 , 66, 326-335	3	16
201	Effects of seeding adipose-derived stem cells on electrospun nanocomposite used as chest wall graft in a murine model. <i>Injury</i> , 2017 , 48, 2080-2088	2.5	6
200	A Soft Total Artificial Heart-First Concept Evaluation on a Hybrid Mock Circulation. <i>Artificial Organs</i> , 2017 , 41, 948-958	2.6	42
199	Ultrapure Green Light-Emitting Diodes Using Two-Dimensional Formamidinium Perovskites: Achieving Recommendation 2020 Color Coordinates. <i>Nano Letters</i> , 2017 , 17, 5277-5284	11.5	166
198	A Bioinspired Ultraporous Nanofiber-Hydrogel Mimic of the Cartilage Extracellular Matrix. <i>Advanced Healthcare Materials</i> , 2016 , 5, 3129-3138	10.1	40
197	Hollow Silica as an Optically Transparent and Thermally Insulating Polymer Additive. <i>Langmuir</i> , 2016 , 32, 338-45	4	35
196	Ultrasensitive Quantification of Pesticide Contamination and Drift Using Silica Particles with Encapsulated DNA. <i>Environmental Science and Technology Letters</i> , 2016 , 3, 19-23	11	13
195	In vivo risk evaluation of carbon-coated iron carbide nanoparticles based on short- and long-term exposure scenarios. <i>Nanomedicine</i> , 2016 , 11, 783-96	5.6	16

(2015-2016)

194	Particles with an identity: Tracking and tracing in commodity products. <i>Powder Technology</i> , 2016 , 291, 344-350	5.2	44	
193	Click and release: fluoride cleavable linker for mild bioorthogonal separation. <i>Chemical Communications</i> , 2016 , 52, 938-41	5.8	12	
192	The dissipation rate of news in online mass media evaluated by chemical engineering and process control tools. <i>AICHE Journal</i> , 2016 , 62, 1104-1111	3.6		
191	Submicrometer-Sized Thermometer Particles Exploiting Selective Nucleic Acid Stability. <i>Small</i> , 2016 , 12, 452-6	11	17	
190	DNA-Based Sensor Particles Enable Measuring Light Intensity in Single Cells. <i>Advanced Materials</i> , 2016 , 28, 2765-70	24	3	
189	Incorporation of particulate bioactive glasses into a dental root canal sealer. <i>Biomedical Glasses</i> , 2016 , 2,	2.7	13	
188	Kohlenstoff-Nanobl\(\mathbb{G}\)chen: Synthese, chemische Funktionalisierung und containerartiges Verhalten in Wasser. <i>Angewandte Chemie</i> , 2016 , 128, 8905-8909	3.6	3	
187	Hollow Carbon Nanobubbles: Synthesis, Chemical Functionalization, and Container-Type Behavior in Water. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 8761-5	16.4	20	
186	Selective Biosorption and Recovery of Tungsten from an Urban Mine and Feasibility Evaluation. <i>Industrial & Engineering Chemistry Research</i> , 2016 , 55, 2903-2910	3.9	22	
185	Nanoscale bioactive glass activates osteoclastic differentiation of RAW 264.7 cells. <i>Nanomedicine</i> , 2016 , 11, 1093-105	5.6	15	
184	Application of the Prunus spp. Cyanide Seed Defense System onto Wheat: Reduced Insect Feeding and Field Growth Tests. <i>Journal of Agricultural and Food Chemistry</i> , 2016 , 64, 3501-7	5.7	7	
183	MOF Channels within Porous Polymer Film: Flexible, Self-Supporting ZIF-8 Poly(ether sulfone) Composite Membrane. <i>Chemistry of Materials</i> , 2016 , 28, 7638-7644	9.6	52	
182	Adsorption and separation of amyloid beta aggregates using ferromagnetic nanoparticles coated with charged polymer brushes. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 3351-3357	7.3	6	
181	Programmable living material containing reporter micro-organisms permits quantitative detection of oligosaccharides. <i>Biomaterials</i> , 2015 , 61, 1-9	15.6	12	
180	Porous, Water-Resistant Multifilament Yarn Spun from Gelatin. <i>Biomacromolecules</i> , 2015 , 16, 1997-200	56.9	10	
179	Tissue mechanics of piled critical size biomimetic and biominerizable nanocomposites: Formation of bioreactor-induced stem cell gradients under perfusion and compression. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2015 , 47, 124-134	4.1	16	
178	Silica Microcapsules for Long-Term, Robust, and Reliable Room Temperature RNA Preservation. <i>Advanced Healthcare Materials</i> , 2015 , 4, 1332-8	10.1	13	
177	Uptake of ferromagnetic carbon-encapsulated metal nanoparticles in endothelial cells: influence of shear stress and endothelial activation. <i>Nanomedicine</i> , 2015 , 10, 3537-46	5.6	5	

176	An Untethered, Jumping Roly-Poly Soft Robot Driven by Combustion. Soft Robotics, 2015, 2, 33-41	9.2	55
175	Template-particle stabilized bicontinuous emulsion yielding controlled assembly of hierarchical high-flux filtration membranes. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 611-7	9.5	18
174	RNA Storage: Silica Microcapsules for Long-Term, Robust, and Reliable Room Temperature RNA Preservation (Adv. Healthcare Mater. 9/2015). <i>Advanced Healthcare Materials</i> , 2015 , 4, 1262-1262	10.1	1
173	Robuste chemische Speicherung von digitalen Informationen auf DNA in Silicat unter Verwendung fehlerkorrigierender Codes. <i>Angewandte Chemie</i> , 2015 , 127, 2582-2586	3.6	10
172	Contrast Agent Incorporation into Silicone Enables Real-Time Flow-Structure Analysis of Mammalian Vein-Inspired Soft Pumps. <i>Advanced Functional Materials</i> , 2015 , 25, 2129-2137	15.6	10
171	Fibers Mechanically Similar to Sheep Wool Obtained by Wet Spinning of Gelatin and Optional Plasticizers. <i>Macromolecular Materials and Engineering</i> , 2015 , 300, 234-241	3.9	12
170	Magnetically deliverable calcium phosphate nanoparticles for localized gene expression. <i>RSC Advances</i> , 2015 , 5, 9997-10004	3.7	7
169	Robust chemical preservation of digital information on DNA in silica with error-correcting codes. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 2552-5	16.4	275
168	Palladium Nanoparticles Supported on Magnetic Carbon-Coated Cobalt Nanobeads: Highly Active and Recyclable Catalysts for Alkene Hydrogenation. <i>Advanced Functional Materials</i> , 2014 , 24, 2020-2027	715.6	95
167	Proliferation of ASC-derived endothelial cells in a 3D electrospun mesh: impact of bone-biomimetic nanocomposite and co-culture with ASC-derived osteoblasts. <i>Injury</i> , 2014 , 45, 974-80	2.5	26
166	Magnetically recoverable, thermostable, hydrophobic DNA/silica encapsulates and their application as invisible oil tags. <i>ACS Nano</i> , 2014 , 8, 2677-85	16.7	87
165	Self-defending anti-vandalism surfaces based on mechanically triggered mixing of reactants in polymer foils. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 8425-8430	13	4
164	Palladium nanoparticles supported on ionic liquid modified, magnetic nanobeads [recyclable, high-capacity catalysts for alkene hydrogenation. <i>RSC Advances</i> , 2014 , 4, 8541	3.7	43
163	Roll-to-Roll Preparation of Mesoporous Membranes by Nanoparticle Template Removal. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 9214-9220	3.9	20
162	Magnetic superbasic proton sponges are readily removed and permit direct product isolation. Journal of Organic Chemistry, 2014 , 79, 10908-15	4.2	19
161	Inflammatory response of lung macrophages and epithelial cells after exposure to redox active nanoparticles: effect of solubility and antioxidant treatment. <i>Environmental Science & Emp; Technology</i> , 2014 , 48, 13960-8	10.3	21
160	Induced cyanogenesis from hydroxynitrile lyase and mandelonitrile on wheat with polylactic acid multilayer-coating produces self-defending seeds. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 853-858	13	3
159	PCR quantification of SiOlparticle uptake in cells in the ppb and ppm range via silica encapsulated DNA barcodes. <i>Chemical Communications</i> , 2014 , 50, 10707-9	5.8	4

(2013-2014)

158	Labeling milk along its production chain with DNA encapsulated in silica. <i>Journal of Agricultural and Food Chemistry</i> , 2014 , 62, 10615-20	5.7	21
157	3D printed lost-wax casted soft silicone monoblocks enable heart-inspired pumping by internal combustion. <i>RSC Advances</i> , 2014 , 4, 16039-16042	3.7	32
156	Characterization of carbon-coated magnetic nanoparticles using clinical blood coagulation assays: effect of PEG-functionalization and comparison to silica nanoparticles. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 3753-3758	7.3	16
155	Design, Performance and Reinforcement of Bearing-Free Soft Silicone Combustion-Driven Pumps. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 12519-12526	3.9	21
154	Efficient magnetic recycling of covalently attached enzymes on carbon-coated metallic nanomagnets. <i>Bioconjugate Chemistry</i> , 2014 , 25, 677-84	6.3	30
153	Micro Mirror Polymer Composite Offers Mechanically Switchable Light Transmittance. <i>Advanced Engineering Materials</i> , 2014 , 16, 878-883	3.5	4
152	Functionalizing a dentin bonding resin to become bioactive. <i>Dental Materials</i> , 2014 , 30, 868-75	5.7	53
151	Comparison of flame-made rhodium on Al2O3 or Ce0.5Zr0.5O2 supports for the partial oxidation of methane. <i>Applied Catalysis A: General</i> , 2014 , 469, 275-283	5.1	9
150	Purification of NaYF4-Based Upconversion Phosphors. <i>Chemistry of Materials</i> , 2014 , 26, 2015-2020	9.6	17
149	Gas-phase synthesis of magnetic metal/polymer nanocomposites. <i>Nanotechnology</i> , 2014 , 25, 505602	3.4	16
148	Tracking Trace Amounts of Submicrometer Silica Particles in Wastewaters and Activated Sludge Using Silica-Encapsulated DNA Barcodes. <i>Environmental Science and Technology Letters</i> , 2014 , 1, 484-489	9 ¹¹	25
147	Spinning Angora Rabbit Wool-Like Porous Fibers from a Non-Equilibrated Gelatin/Water/2-Propanol Mixture. <i>Advanced Functional Materials</i> , 2014 , 24, 1831-1839	15.6	10
146	Bioactive nanocomposite for chest-wall replacement: Cellular response in a murine model. <i>Journal of Biomaterials Applications</i> , 2014 , 29, 36-45	2.9	10
145	Limestone nanoparticles as nanopore templates in polymer membranes: narrow pore size distribution and use as self-wetting dialysis membranes. <i>RSC Advances</i> , 2014 , 4, 61420-61426	3.7	15
144	Sensitive Detection of Aromatic Hydrophobic Compounds in Water and Perfluorooctane Sulfonate in Human Serum by Surface-Assisted Laser Desorption/Ionization Mass Spectrometry (SALDI-MS) with Amine Functionalized Graphene-Coated Cobalt Nanoparticles. <i>Mass Spectrometry</i> , 2014 , 3, A0028	1.7	2
143	Ferromagnetic inks facilitate large scale paper recycling and reduce bleach chemical consumption. <i>Langmuir</i> , 2013 , 29, 5093-8	4	6
142	Soft Iron/Silicon Composite Tubes for Magnetic Peristaltic Pumping: Frequency-Dependent Pressure and Volume Flow. <i>Advanced Functional Materials</i> , 2013 , 23, 3845-3849	15.6	56
141	Nanomagnet-based removal of lead and digoxin from living rats. <i>Nanoscale</i> , 2013 , 5, 8718-23	7.7	37

140	Organic synthesis on graphene. Accounts of Chemical Research, 2013, 46, 2297-306	24.3	58
139	pH-dependent antibacterial effects on oral microorganisms through pure PLGA implants and composites with nanosized bioactive glass. <i>Acta Biomaterialia</i> , 2013 , 9, 9118-25	10.8	30
138	Flame Synthesis of Complex Fluoride-Based Nanoparticles as Upconversion Phosphors. <i>KONA Powder and Particle Journal</i> , 2013 , 30, 267-275	3.4	4
137	Quantitative Recovery of Magnetic Nanoparticles from Flowing Blood: Trace Analysis and the Role of Magnetization. <i>Advanced Functional Materials</i> , 2013 , 23, 4888-4896	15.6	21
136	Nanoparticles: Endotoxin Removal by Magnetic Separation-Based Blood Purification (Adv. Healthcare Mater. 6/2013). <i>Advanced Healthcare Materials</i> , 2013 , 2, 828-828	10.1	1
135	Endotoxin removal by magnetic separation-based blood purification. <i>Advanced Healthcare Materials</i> , 2013 , 2, 829-35	10.1	37
134	Synthesis of trisubstituted ureas by a multistep sequence utilizing recyclable magnetic reagents and scavengers. <i>Chemistry - A European Journal</i> , 2013 , 19, 10038-45	4.8	13
133	Rapid surface-biostructure interaction analysis using strong metal-based nanomagnets. <i>Langmuir</i> , 2013 , 29, 14117-23	4	2
132	Heat-Induced Dry Tailoring of Porosity in Polymer Scaffolds. <i>Macromolecular Materials and Engineering</i> , 2013 , 298, 1143-1148	3.9	2
131	Pressureless mechanical induction of stem cell differentiation is dose and frequency dependent. <i>PLoS ONE</i> , 2013 , 8, e81362	3.7	20
130	Use of NIR light and upconversion phosphors in light-curable polymers. <i>Dental Materials</i> , 2012 , 28, 304-	15 .7	61
129	Soluble nanoparticles as removable pore templates for the preparation of polymer ultrafiltration membranes. <i>Journal of Membrane Science</i> , 2012 , 387-388, 76-82	9.6	31
128	Functionalized graphene-coated cobalt nanoparticles for highly efficient surface-assisted laser desorption/ionization mass spectrometry analysis. <i>Analytical Chemistry</i> , 2012 , 84, 9268-75	7.8	49
127	Tissue engineered bone grafts based on biomimetic nanocomposite PLGA/amorphous calcium phosphate scaffold and human adipose-derived stem cells. <i>Injury</i> , 2012 , 43, 1689-97	2.5	70
126	Incorporation of Penicillin-Producing Fungi into Living Materials to Provide Chemically Active and Antibiotic-Releasing Surfaces. <i>Angewandte Chemie</i> , 2012 , 124, 11455-11458	3.6	9
125	Incorporation of penicillin-producing fungi into living materials to provide chemically active and antibiotic-releasing surfaces. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 11293-6	16.4	24
124	Electrical resistivity of assembled transparent inorganic oxide nanoparticle thin layers: influence of silica, insulating impurities, and surfactant layer thickness. <i>ACS Applied Materials & Company Company</i> , Interfaces, 2012, 4, 2664-71	9.5	15
123	Stable dispersions of ferromagnetic carbon-coated metal nanoparticles: preparation via surface initiated atom transfer radical polymerization. <i>Journal of Materials Chemistry</i> , 2012 , 22, 12064		38

Magnetic Cobalt[0]-graphene Nanospheres 2012, 122 1 Nanoparticle-Assisted, Catalytic Etching of Carbon Surfaces as a Method to Manufacture 3.8 8 121 Nanogrooves. Journal of Physical Chemistry C, 2012, 116, 13693-13698 Persistence of engineered nanoparticles in a municipal solid-waste incineration plant. Nature 120 28.7 156 Nanotechnology, **2012**, 7, 520-4 Scaling up magnetic filtration and extraction to the ton per hour scale using carbon coated metal 119 8.3 21 nanoparticles. Separation and Purification Technology, 2012, 96, 68-74 Large-Scale Synthesis of PbSIIO2 Heterojunction Nanoparticles in a Single Step for Solar Cell 118 3.8 42 Application. Journal of Physical Chemistry C, 2012, 116, 16264-16270 Physical defect formation in few layer graphene-like carbon on metals: influence of temperature, 117 4 13 acidity, and chemical functionalization. Langmuir, 2012, 28, 4565-72 Effects of flame made zinc oxide particles in human lung cells - a comparison of aerosol and 116 8.4 40 suspension exposures. Particle and Fibre Toxicology, 2012, 9, 33 Phosphate starvation as an antimicrobial strategy: the controllable toxicity of lanthanum oxide 115 5.8 49 nanoparticles. Chemical Communications, 2012, 48, 3869-71 Carbon Modifications and Surfaces for Catalytic Organic Transformations. ACS Catalysis, 2012, 2, 1267-1284 152 114 Magnetic Nanobeads as Support for Zinc(II)-Cyclen Complexes: Selective and Reversible Extraction 2.3 113 of Riboflavin. ChemistryOpen, 2012, 1, 125-9 Chemical modification of graphene characterized by Raman and transport experiments. Nanoscale, 112 7.7 14 2012, 4, 3781-5 Porous polysulfone coatings for enhanced drug delivery. Biomedical Microdevices, 2012, 14, 603-12 111 3.7 19 Carbon coated magnetic nanoparticles as supports in microwave-assisted palladium catalyzed 110 3.9 2 Suzuki-Miyaura couplings. Green Processing and Synthesis, 2012, 1, Incorporating microorganisms into polymer layers provides bioinspired functional living materials. 109 28 11.5 Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 90-4 Nanocomposites of high-density polyethylene with amorphous calcium phosphate: in vitro biomineralization and cytocompatibility of human mesenchymal stem cells. Biomedical Materials 108 7 3.5 (Bristol), 2012, 7, 054103 Immobilized tyclodextrin on surface-modified carbon-coated cobalt nanomagnets: reversible 107 65 organic contaminant adsorption and enrichment from water. Langmuir, 2011, 27, 1924-9 Two-layer membranes of calcium phosphate/collagen/PLGA nanofibres: in vitro biomineralisation 106 7.7 59 and osteogenic differentiation of human mesenchymal stem cells. Nanoscale, 2011, 3, 401-9 Cerium oxide nanoparticle uptake kinetics from the gas-phase into lung cells in vitro is transport 105 29 5.7 limited. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 77, 368-75

104	Combined Covalent and Noncovalent Functionalization of Nanomagnetic Carbon Surfaces with Dendrimers and BODIPY Fluorescent Dye. <i>Chemistry of Materials</i> , 2011 , 23, 3606-3613	9.6	35
103	From Embedded to Supported Metal/Oxide Nanomaterials: Thermal Behavior and Structural Evolution at Elevated Temperatures [] Journal of Physical Chemistry C, 2011, 115, 1269-1276	3.8	11
102	Reactivity of calcium phosphate nanoparticles prepared by flame spray synthesis as precursors for calcium phosphate cements. <i>Journal of Materials Chemistry</i> , 2011 , 21, 13963		22
101	Optimization of Bioglass Scaffold Fabrication Process. <i>Journal of the American Ceramic Society</i> , 2011 , 94, 4184-4190	3.8	28
100	Accelerated mineralization of dense collagen-nano bioactive glass hybrid gels increases scaffold stiffness and regulates osteoblastic function. <i>Biomaterials</i> , 2011 , 32, 8915-26	15.6	157
99	Reversible As(V) adsorption on magnetic nanoparticles and pH dependent desorption concentrates dilute solutions and realizes true moving bed reactor systems. <i>Chemical Engineering Journal</i> , 2011 , 175, 244-250	14.7	15
98	Iron core/shell nanoparticles as magnetic drug carriers: possible interactions with the vascular compartment. <i>Nanomedicine</i> , 2011 , 6, 1199-213	5.6	20
97	Incorporation of reactive silver-tricalcium phosphate nanoparticles into polyamide 6 allows preparation of self-disinfecting fibers. <i>Polymer Engineering and Science</i> , 2011 , 51, 71-77	2.3	12
96	Nanopartikel in biologischen Systemen. <i>Angewandte Chemie</i> , 2011 , 123, 1276-1293	3.6	29
95	Nanoparticles in biological systems. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 1242-58	16.4	417
95 94	Nanoparticles in biological systems. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 1242-58 Magnetic silyl scaffold enables efficient recycling of protecting groups. <i>Chemistry - A European Journal</i> , 2011 , 17, 10566-73	16.4 4.8	4 ¹⁷
	Magnetic silyl scaffold enables efficient recycling of protecting groups. <i>Chemistry - A European</i>		
94	Magnetic silyl scaffold enables efficient recycling of protecting groups. <i>Chemistry - A European Journal</i> , 2011 , 17, 10566-73 Magnetothermally responsive C/Co@PNIPAM-nanoparticles enable preparation of self-separating		30
94	Magnetic silyl scaffold enables efficient recycling of protecting groups. <i>Chemistry - A European Journal</i> , 2011 , 17, 10566-73 Magnetothermally responsive C/Co@PNIPAM-nanoparticles enable preparation of self-separating phase-switching palladium catalysts. <i>Journal of Materials Chemistry</i> , 2011 , 21, 2991 A fast hybrid start-up process for thermally self-sustained catalyticn-butane reforming in	4.8	30 74
94 93 92	Magnetic silyl scaffold enables efficient recycling of protecting groups. <i>Chemistry - A European Journal</i> , 2011 , 17, 10566-73 Magnetothermally responsive C/Co@PNIPAM-nanoparticles enable preparation of self-separating phase-switching palladium catalysts. <i>Journal of Materials Chemistry</i> , 2011 , 21, 2991 A fast hybrid start-up process for thermally self-sustained catalyticn-butane reforming in micro-SOFC power plants. <i>Energy and Environmental Science</i> , 2011 , 4, 3041 Monomer-on-monomer (MoM) Mitsunobu reaction: facile purification utilizing surface-initiated	4.8 35·4	30 74 20
94 93 92 91	Magnetic silyl scaffold enables efficient recycling of protecting groups. <i>Chemistry - A European Journal</i> , 2011 , 17, 10566-73 Magnetothermally responsive C/Co@PNIPAM-nanoparticles enable preparation of self-separating phase-switching palladium catalysts. <i>Journal of Materials Chemistry</i> , 2011 , 21, 2991 A fast hybrid start-up process for thermally self-sustained catalyticn-butane reforming in micro-SOFC power plants. <i>Energy and Environmental Science</i> , 2011 , 4, 3041 Monomer-on-monomer (MoM) Mitsunobu reaction: facile purification utilizing surface-initiated sequestration. <i>Organic Letters</i> , 2011 , 13, 8-10 Fluorinated groups mediate the immunomodulatory effects of volatile anesthetics in acute cell	35·4 6.2	30 74 20 23
9493929190	Magnetic silyl scaffold enables efficient recycling of protecting groups. <i>Chemistry - A European Journal</i> , 2011 , 17, 10566-73 Magnetothermally responsive C/Co@PNIPAM-nanoparticles enable preparation of self-separating phase-switching palladium catalysts. <i>Journal of Materials Chemistry</i> , 2011 , 21, 2991 A fast hybrid start-up process for thermally self-sustained catalyticn-butane reforming in micro-SOFC power plants. <i>Energy and Environmental Science</i> , 2011 , 4, 3041 Monomer-on-monomer (MoM) Mitsunobu reaction: facile purification utilizing surface-initiated sequestration. <i>Organic Letters</i> , 2011 , 13, 8-10 Fluorinated groups mediate the immunomodulatory effects of volatile anesthetics in acute cell injury. <i>American Journal of Respiratory Cell and Molecular Biology</i> , 2011 , 45, 617-24 Device for continuous extracorporeal blood purification using target-specific metal nanomagnets.	4.8 35.4 6.2 5.7	30 74 20 23 29

(2010-2010)

86	No evidence for cerium dioxide nanoparticle translocation in maize plants. <i>Environmental Science & Environmental Science & Environmental Science</i>	10.3	219
85	Energy-Efficient Noble Metal Recovery by the Use of Acid-Stable Nanomagnets. <i>Industrial & Engineering Chemistry Research</i> , 2010 , 49, 9355-9362	3.9	29
84	Cu(II)Azabis(oxazoline) Complexes Immobilized on Magnetic Co/C Nanoparticles: Kinetic Resolution of 1,2-Diphenylethane-1,2-diol under Batch and Continuous-Flow Conditions. <i>Chemistry of Materials</i> , 2010 , 22, 305-310	9.6	90
83	Exposure of aerosols and nanoparticle dispersions to in vitro cell cultures: A review on the dose relevance of size, mass, surface and concentration. <i>Journal of Aerosol Science</i> , 2010 , 41, 1123-1142	4.3	44
82	Nanoparticle cytotoxicity depends on intracellular solubility: comparison of stabilized copper metal and degradable copper oxide nanoparticles. <i>Toxicology Letters</i> , 2010 , 197, 169-74	4.4	306
81	Effect of nanoparticulate bioactive glass particles on bioactivity and cytocompatibility of poly(3-hydroxybutyrate) composites. <i>Journal of the Royal Society Interface</i> , 2010 , 7, 453-65	4.1	115
80	Bottom-up Fabrication of Metal/Metal Nanocomposites from Nanoparticles of Immiscible Metals. <i>Chemistry of Materials</i> , 2010 , 22, 155-160	9.6	74
79	Printable Nanoporous Silver Membranes. <i>Chemistry of Materials</i> , 2010 , 22, 4980-4986	9.6	25
78	Towards electron transport measurements in chemically modified graphene: effect of a solvent. <i>New Journal of Physics</i> , 2010 , 12, 125007	2.9	12
77	Chemical Aerosol Engineering as a Novel Tool for Material Science: From Oxides to Salt and Metal Nanoparticles. <i>Aerosol Science and Technology</i> , 2010 , 44, 161-172	3.4	83
76	Elastomeric nanocomposites as cell delivery vehicles and cardiac support devices. <i>Soft Matter</i> , 2010 , 6, 4715	3.6	52
75	Nanoscale Bioactive Silicate Glasses in Biomedical Applications 2010 ,		4
74	Polymer/bioactive glass nanocomposites for biomedical applications: A review. <i>Composites Science and Technology</i> , 2010 , 70, 1764-1776	8.6	384
73	Immobilization on a Nanomagnetic Co/C Surface Using ROM Polymerization: Generation of a Hybrid Material as Support for a Recyclable Palladium Catalyst. <i>Advanced Functional Materials</i> , 2010 , 20, 4323-	4328	108
72	Nanoparticles as semi-heterogeneous catalyst supports. <i>Chemistry - A European Journal</i> , 2010 , 16, 8950	-647 8	311
71	A recyclable nanoparticle-supported palladium catalyst for the hydroxycarbonylation of aryl halides in water. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 1867-70	16.4	199
70	Light-curable polymer/calcium phosphate nanocomposite glue for bone defect treatment. <i>Acta Biomaterialia</i> , 2010 , 6, 2704-10	10.8	25
69	Poly(3-hydroxybutyrate) multifunctional composite scaffolds for tissue engineering applications. <i>Biomaterials</i> , 2010 , 31, 2806-15	15.6	141

68	Blood purification using functionalized core/shell nanomagnets. Small, 2010, 6, 1388-92	11	105
67	Selective chemical modification of graphene surfaces: distinction between single- and bilayer graphene. <i>Small</i> , 2010 , 6, 1125-30	11	167
66	Spherical calcium phosphate nanoparticle fillers allow polymer processing of bone fixation devices with high bioactivity. <i>Polymer Engineering and Science</i> , 2010 , 50, 952-960	2.3	20
65	Permanent pattern-resolved adjustment of the surface potential of graphene-like carbon through chemical functionalization. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 224-7	16.4	89
64	Tricalcium phosphate nanoparticles enable rapid purification, increase transduction kinetics, and modify the tropism of mammalian viruses. <i>Biotechnology and Bioengineering</i> , 2009 , 102, 1197-208	4.9	9
63	Comparative assessment of time-related bioactive glass and calcium hydroxide effects on mechanical properties of human root dentin. <i>Dental Traumatology</i> , 2009 , 25, 126-9	4.5	35
62	Magnet-guided transduction of mammalian cells and mice using engineered magnetic lentiviral particles. <i>Journal of Biotechnology</i> , 2009 , 141, 118-22	3.7	23
61	In vivo and in vitro evaluation of flexible, cottonwool-like nanocomposites as bone substitute material for complex defects. <i>Acta Biomaterialia</i> , 2009 , 5, 1775-84	10.8	103
60	Particle emission and exposure during nanoparticle synthesis in research laboratories. <i>Annals of Occupational Hygiene</i> , 2009 , 53, 829-38		34
59	Direct combination of nanoparticle fabrication and exposure to lung cell cultures in a closed setup as a method to simulate accidental nanoparticle exposure of humans. <i>Environmental Science & Environmental Science & Technology</i> , 2009 , 43, 2634-40	10.3	61
58	Synthesis and Covalent Surface Functionalization of Nonoxidic Iron CoreBhell Nanomagnets. <i>Chemistry of Materials</i> , 2009 , 21, 3275-3281	9.6	124
57	Magnetic EDTA: coupling heavy metal chelators to metal nanomagnets for rapid removal of cadmium, lead and copper from contaminated water. <i>Chemical Communications</i> , 2009 , 4862-4	5.8	136
56	Scaling the Long-Term Shear Stability of Aqueous Pigment Dispersions. <i>Industrial & amp; Engineering Chemistry Research</i> , 2009 , 48, 8944-8949	3.9	1
55	High-strength metal nanomagnets for diagnostics and medicine: carbon shells allow long-term stability and reliable linker chemistry. <i>Nanomedicine</i> , 2009 , 4, 787-98	5.6	51
54	Gold adsorption on the carbon surface of C/Co nanoparticles allows magnetic extraction from extremely diluted aqueous solutions. <i>Journal of Materials Chemistry</i> , 2009 , 19, 8239		55
53	Physico-Chemical Differences Between Particle- and Molecule-Derived Toxicity: Can We Make Inherently Safe Nanoparticles?. <i>Chimia</i> , 2009 , 63, 38-43	1.3	34
52	Phase Evolution of Thermally Treated Amorphous Tricalcium Phosphate Nanoparticles. <i>Key Engineering Materials</i> , 2008 , 396-398, 595-598	0.4	10
51	Removal of oxide nanoparticles in a model wastewater treatment plant: influence of agglomeration and surfactants on clearing efficiency. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	399

50	Effect of thermal treatments on the reactivity of nanosized tricalcium phosphate powders. <i>Journal of Materials Chemistry</i> , 2008 , 18, 4460		26
49	Flexible, silver containing nanocomposites for the repair of bone defects: antimicrobial effect against E. coli infection and comparison to tetracycline containing scaffolds. <i>Journal of Materials Chemistry</i> , 2008 , 18, 2679		61
48	Towards Magnetic Molecule and Reagent Separation in Organic Synthesis: Development and Use of Covalently Functionalized Nanomagnets. <i>Chimia</i> , 2008 , 62, 13-17	1.3	3
47	Fast and exergy efficient start-up of micro-solid oxide fuel cell systems by using the reformer or the post-combustor for start-up heating. <i>Journal of Power Sources</i> , 2008 , 182, 558-564	8.9	14
46	Disk-shaped packed bed micro-reactor for butane-to-syngas processing. <i>Chemical Engineering Science</i> , 2008 , 63, 5193-5201	4.4	23
45	Micro-organism-triggered release of silver nanoparticles from biodegradable oxide carriers allows preparation of self-sterilizing polymer surfaces. <i>Small</i> , 2008 , 4, 824-32	11	102
44	TEMPO supported on magnetic C/Co-nanoparticles: a highly active and recyclable organocatalyst. <i>Chemistry - A European Journal</i> , 2008 , 14, 8262-6	4.8	154
43	Cotton wool-like nanocomposite biomaterials prepared by electrospinning: in vitro bioactivity and osteogenic differentiation of human mesenchymal stem cells. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2008 , 84, 350-62	3.5	103
42	Surfactant-Free, Melt-Processable Metal P olymer Hybrid Materials: Use of Graphene as a Dispersing Agent. <i>Advanced Materials</i> , 2008 , 20, 3044-3049	24	35
41	Comparison of nanoscale and microscale bioactive glass on the properties of P(3HB)/Bioglass composites. <i>Biomaterials</i> , 2008 , 29, 1750-61	15.6	280
40	Phase transitions in amorphous calcium phosphates with different Ca/P ratios. <i>Thermochimica Acta</i> , 2008 , 468, 75-80	2.9	56
39	Graphene-stabilized copper nanoparticles as an air-stable substitute for silver and gold in low-cost ink-jet printable electronics. <i>Nanotechnology</i> , 2008 , 19, 445201	3.4	226
38	Preparation of Homogeneous, Bulk Nanocrystalline Ni/Mo Alloys with Tripled Vickers Hardness Using Flame-Made Metal Nanoparticles. <i>Chemistry of Materials</i> , 2007 , 19, 4847-4854	9.6	26
37	Large-scale preparation of ceria/bismuth metal-matrix nano-composites with a hardness comparable to steel. <i>Journal of Materials Chemistry</i> , 2007 , 17, 1485		14
36	Effect of particle size, crystal phase and crystallinity on the reactivity of tricalcium phosphate cements for bone reconstruction. <i>Journal of Materials Chemistry</i> , 2007 , 17, 4072		84
35	The degree and kind of agglomeration affect carbon nanotube cytotoxicity. <i>Toxicology Letters</i> , 2007 , 168, 121-31	4.4	657
34	Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress. <i>Environmental Science & Environmental Science & En</i>	10.3	713
33	Highly sensitive optical detection of humidity on polymer/metal nanoparticle hybrid films. <i>Langmuir</i> , 2007 , 23, 3473-7	4	104

32	Inorganic nanoparticles for transfection of mammalian cells and removal of viruses from aqueous solutions. <i>Biotechnology and Bioengineering</i> , 2007 , 98, 1083-93	4.9	24
31	Covalently functionalized cobalt nanoparticles as a platform for magnetic separations in organic synthesis. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 4909-12	16.4	280
30	Comparison of amorphous TCP nanoparticles to micron-sized alpha-TCP as starting materials for calcium phosphate cements. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2007 , 83, 400-7	3.5	57
29	Remineralization of human dentin using ultrafine bioactive glass particles. <i>Acta Biomaterialia</i> , 2007 , 3, 936-43	10.8	244
28	Ultraporous 3D polymer meshes by low-temperature electrospinning: Use of ice crystals as a removable void template. <i>Polymer Engineering and Science</i> , 2007 , 47, 2020-2026	2.3	157
27	Syngas production from butane using a flame-made Rh/Ce0.5Zr0.5O2 catalyst. <i>Applied Catalysis B: Environmental</i> , 2007 , 73, 336-344	21.8	39
26	Preparation of nano-gypsum from anhydrite nanoparticles: Strongly increased Vickers hardness and formation of calcium sulfate nano-needles. <i>Journal of Nanoparticle Research</i> , 2007 , 9, 275-281	2.3	28
25	Insulator coated metal nanoparticles with a core/shell geometry exhibit a temperature sensitivity similar to advanced spinels. <i>Sensors and Actuators A: Physical</i> , 2007 , 138, 120-129	3.9	20
24	Controlling the Reactivity of Calcium Phosphate Cements. <i>Key Engineering Materials</i> , 2007 , 361-363, 295-298	0.4	1
23	Glass and bioglass nanopowders by flame synthesis. Chemical Communications, 2006, 1384-6	5.8	135
22	In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. <i>Environmental Science & Environmental Science & Environm</i>	10.3	1065
21	Improved degradation and bioactivity of amorphous aerosol derived tricalcium phosphate nanoparticles in poly(lactide-co-glycolide). <i>Nanotechnology</i> , 2006 , 17, 2054-2061	3.4	72
20	Gas phase synthesis of fcc-cobalt nanoparticles. <i>Journal of Materials Chemistry</i> , 2006 , 16, 1825		139
19	Rapid production of micropatterned surfaces using a fluid dynamical instability. <i>Polymer Engineering and Science</i> , 2006 , 46, 1541-1547	2.3	4
18	Energy Consumption During Nanoparticle Production: How Economic is Dry Synthesis?. <i>Journal of Nanoparticle Research</i> , 2006 , 8, 1-9	2.3	103
17	Flame spray synthesis under a non-oxidizing atmosphere: Preparation of metallic bismuth nanoparticles and nanocrystalline bulk bismuth metal. <i>Journal of Nanoparticle Research</i> , 2006 , 8, 729-73	62.3	42
16	Flame synthesis of calcium-, strontium-, barium fluoride nanoparticles and sodium chloride. <i>Chemical Communications</i> , 2005 , 1767-9	5.8	91
15	Flame synthesis of calcium carbonate nanoparticles. <i>Chemical Communications</i> , 2005 , 648-50	5.8	51

LIST OF PUBLICATIONS

14	Fluoro-apatite and Calcium Phosphate Nanoparticles by Flame Synthesis. <i>Chemistry of Materials</i> , 2005 , 17, 36-42	9.6	162
13	Flame-Made Pt/Ceria/Zirconia for Low-Temperature Oxygen Exchange. <i>Chemistry of Materials</i> , 2005 , 17, 3352-3358	9.6	66
12	Oxide nanoparticle uptake in human lung fibroblasts: effects of particle size, agglomeration, and diffusion at low concentrations. <i>Environmental Science & Environmental Scie</i>	10.3	673
11	Flame synthesis of nanocrystalline ceria-zirconia: effect of carrier liquid. <i>Chemical Communications</i> , 2003 , 588-9	5.8	109
10	Flame-made platinum/alumina: structural properties and catalytic behaviour in enantioselective hydrogenation. <i>Journal of Catalysis</i> , 2003 , 213, 296-304	7.3	128
9	Flame-made nanocrystalline ceria/zirconia: structural properties and dynamic oxygen exchange capacity. <i>Journal of Catalysis</i> , 2003 , 220, 35-43	7-3	83
8	Flame-made nanocrystalline ceria/zirconia doped with alumina or silica: structural properties and enhanced oxygen exchange capacity. <i>Journal of Materials Chemistry</i> , 2003 , 13, 2979		72
7	Aerosol flame reactors for manufacture of nanoparticles. <i>Powder Technology</i> , 2002 , 126, 103-108	5.2	179
6	Heterogeneous Catalysis by Flame-Made Nanoparticles. <i>Chimia</i> , 2002 , 56, 485-489	1.3	20
5	Flame-Made Titania/Silica Epoxidation Catalysts: Toward Large-Scale Production. <i>Industrial &</i> Engineering Chemistry Research, 2002 , 41, 4921-4927	3.9	14
4	TitaniaBilica doped with transition metals via flame synthesis: structural properties and catalytic behavior in epoxidation. <i>Journal of Materials Chemistry</i> , 2002 , 12, 3620-3625		25
3	Flame Aerosol Synthesis of Vanadiallitania Nanoparticles: Structural and Catalytic Properties in the Selective Catalytic Reduction of NO by NH3. <i>Journal of Catalysis</i> , 2001 , 197, 182-191	7.3	143
2	Flame Made Titania/Silica Epoxidation Catalysts. <i>Journal of Catalysis</i> , 2001 , 203, 516-524	7.3	39
1	Genomic encryption of digital data stored in synthetic DNA		1