
Raghavendra Palankar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6681628/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparative analysis of ChAdOx1 nCoV-19 and Ad26.COV2.S SARS-CoV-2 vector vaccines. Haematologica, 2022, 107, 947-957.	3.5	37
2	Ex vivo anticoagulants affect human blood platelet biomechanics with implications for high-throughput functional mechanophenotyping. Communications Biology, 2022, 5, 86.	4.4	5
3	Pathogenesis of vaccine-induced immune thrombotic thrombocytopenia (VITT). Seminars in Hematology, 2022, 59, 97-107.	3.4	30
4	αâ€hemolysin of Staphylococcus aureus impairs thrombus formation. Journal of Thrombosis and Haemostasis, 2022, 20, 1464-1475.	3.8	5
5	Divalent magnesium restores cytoskeletal storage lesions in cold-stored platelet concentrates. Scientific Reports, 2022, 12, 6229.	3.3	2
6	Cytoskeleton Dependent Mobility Dynamics of FcÎ ³ RIIA Facilitates Platelet Haptotaxis and Capture of Opsonized Bacteria. Cells, 2022, 11, 1615.	4.1	3
7	Reduced platelet forces underlie impaired hemostasis in mouse models of <i>MYH9</i> -related disease. Science Advances, 2022, 8, eabn2627.	10.3	21
8	Platelet Shape Changes during Thrombus Formation: Role of Actin-Based Protrusions. Hamostaseologie, 2021, 41, 014-021.	1.9	26
9	Anti–platelet factor 4 antibodies causing VITT do not cross-react with SARS-CoV-2 spike protein. Blood, 2021, 138, 1269-1277.	1.4	102
10	The Copenhagen founder variant GP1BA c.58T>G is the most frequent cause of inherited thrombocytopenia in Denmark. Journal of Thrombosis and Haemostasis, 2021, 19, 2884-2892.	3.8	6
11	Insights in ChAdOx1 nCoV-19 vaccine-induced immune thrombotic thrombocytopenia. Blood, 2021, 138, 2256-2268.	1.4	228
12	The Deglycosylated Form of 1E12, a Monoclonal Anti-PF4 IgG, Strongly Inhibits Antibody-Triggered Cellular Activation in Vaccine-Induced Thrombotic Thrombocytopenia, and Is a Potential New Treatment for VÎ ¹ Ï,,Ï,. Blood, 2021, 138, 582-582.	1.4	5
13	Polyvalent Immunoglobulin Preparations Inhibit Pneumolysin-Induced Platelet Destruction. Thrombosis and Haemostasis, 2021, , .	3.4	4
14	Novel phenotypes observed in patients with <i>ETV6</i> -linked leukaemia/familial thrombocytopenia syndrome and a biallelic <i>ARID5B</i> risk allele as leukaemogenic cofactor. Journal of Medical Genetics, 2020, 57, 427-433.	3.2	11
15	Role of Platelet Cytoskeleton in Platelet Biomechanics: Current and Emerging Methodologies and Their Potential Relevance for the Investigation of Inherited Platelet Disorders. Hamostaseologie, 2020, 40, 337-347.	1.9	12
16	Function of Large and Small Platelets Differs, Depending on Extracellular Calcium Availability and Type of Inductor. Thrombosis and Haemostasis, 2020, 120, 1075-1086.	3.4	8
17	Pneumolysin induces platelet destruction, not platelet activation, which can be prevented by immunoglobulin preparations in vitro. Blood Advances, 2020, 4, 6315-6326.	5.2	22
18	Label-free on chip quality assessment of cellular blood products using real-time deformability cytometry. Lab on A Chip, 2020, 20, 2306-2316.	6.0	16

#	Article	IF	CITATIONS
19	Quantifying singleâ€platelet biomechanics: An outsider's guide to biophysical methods and recent advances. Research and Practice in Thrombosis and Haemostasis, 2020, 4, 386-401.	2.3	19
20	Activated platelets kill Staphylococcus aureus, but not Streptococcus pneumoniae—The role of FcγRIIa and platelet factor 4/heparinantibodies. Journal of Thrombosis and Haemostasis, 2020, 18, 1459-1468.	3.8	13
21	Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). European Journal of Immunology, 2019, 49, 1457-1973.	2.9	766
22	Challenging the concept of immunothrombosis. Blood, 2019, 133, 508-509.	1.4	9
23	Role of Platelet Size Revisited—Function and Protein Composition of Large and Small Platelets. Thrombosis and Haemostasis, 2019, 119, 407-420.	3.4	41
24	Interaction between the Staphylococcus aureus extracellular adherence protein Eap and its subdomains with platelets. International Journal of Medical Microbiology, 2018, 308, 683-691.	3.6	9
25	Platelets kill bacteria by bridging innate and adaptive immunity via platelet factor 4 and FcγRIIA. Journal of Thrombosis and Haemostasis, 2018, 16, 1187-1197.	3.8	64
26	The apelin receptor influences biomechanical and morphological properties of endothelial cells. Journal of Cellular Physiology, 2018, 233, 6250-6261.	4.1	19
27	Secreted Immunomodulatory Proteins of Staphylococcus aureus Activate Platelets and Induce Platelet Aggregation. Thrombosis and Haemostasis, 2018, 47, 745-757.	3.4	27
28	Specific Capture of Peptideâ€Receptive Major Histocompatibility Complex Class I Molecules by Antibody Micropatterns Allows for a Novel Peptideâ€Binding Assay in Live Cells. Small, 2017, 13, 1602974.	10.0	16
29	Guidelines for the use of flow cytometry and cell sorting in immunological studies [*] . European Journal of Immunology, 2017, 47, 1584-1797.	2.9	505
30	Magnetic Nanoparticle Labeling of Human Platelets from Platelet Concentrates for Recovery and Survival Studies. ACS Applied Materials & Interfaces, 2017, 9, 34666-34673.	8.0	19
31	3D Micropillars Guide the Mechanobiology of Human Induced Pluripotent Stem Cellâ€Derived Cardiomyocytes. Advanced Healthcare Materials, 2016, 5, 335-341.	7.6	12
32	Tumour-specific delivery of siRNA-coupled superparamagnetic iron oxide nanoparticles, targeted against PLK1, stops progression of pancreatic cancer. Gut, 2016, 65, 1838-1849.	12.1	71
33	Stem Cell Mechanobiology: 3D Micropillars Guide the Mechanobiology of Human Induced Pluripotent Stem Cellâ€Derived Cardiomyocytes (Adv. Healthcare Mater. 3/2016). Advanced Healthcare Materials, 2016, 5, 334-334.	7.6	0
34	Rupture Forces among Human Blood Platelets at different Degrees of Activation. Scientific Reports, 2016, 6, 25402.	3.3	45
35	Human neutrophil antigenâ€3a antibodies induce neutrophil stiffening and conformational activation of CD11b without shedding of Lâ€selectin. Transfusion, 2015, 55, 2939-2948.	1.6	5
36	Microfluidics: Microfluidic Single-Cell Analysis with Affinity Beads (Small 22/2015). Small, 2015, 11, 2606-2606.	10.0	0

#	Article	IF	CITATIONS
37	Microfluidic Singleâ€Cell Analysis with Affinity Beads. Small, 2015, 11, 2607-2613.	10.0	9
38	Multifunctional gold nanorods for selective plasmonic photothermal therapy in pancreatic cancer cells using ultra-short pulse near-infrared laser irradiation. Nanoscale, 2015, 7, 5328-5337.	5.6	49
39	Polymer Capsules and Electroporation. IFMBE Proceedings, 2015, , 789-792.	0.3	0
40	Micropatterned array to assess the interaction of single platelets with platelet factor 4-heparin-IgG complexes. Thrombosis and Haemostasis, 2014, 111, 862-872.	3.4	13
41	Lanthanide-doped nanoparticles for specific recognition of toll-like receptor (TLR) in human neutrophils. RSC Advances, 2014, 4, 15040.	3.6	1
42	Nanoplasmonically-Induced Defects in Lipid Membrane Monitored by Ion Current: Transient Nanopores versus Membrane Rupture. Nano Letters, 2014, 14, 4273-4279.	9.1	35
43	Mechanical strength and intracellular uptake of CaCO3-templated LbL capsules composed of biodegradable polyelectrolytes: the influence of the number of layers. Journal of Materials Chemistry B, 2013, 1, 1175.	5.8	51
44	Fabrication of Quantum Dot Microarrays Using Electron Beam Lithography for Applications in Analyte Sensing and Cellular Dynamics. ACS Nano, 2013, 7, 4617-4628.	14.6	66
45	Design of hybrid multimodal poly(lactic-co-glycolic acid) polymer nanoparticles for neutrophil labeling, imaging and tracking. Nanoscale, 2013, 5, 12624.	5.6	36
46	Magnetic Nanoparticles as Mediators of Ligand-Free Activation of EGFR Signaling. PLoS ONE, 2013, 8, e68879.	2.5	30
47	Retrieval of a Metabolite from Cells with Polyelectrolyte Microcapsules. Biophysical Journal, 2011, 100, 624a.	0.5	0
48	Mechanobiology: Correlation Between Mechanical Stability of Microcapsules Studied by AFM and Impact of Cellâ€Induced Stresses. Small, 2010, 6, 2858-2862.	10.0	69
49	Retrieval of a Metabolite from Cells with Polyelectrolyte Microcapsules. Small, 2010, 6, 2412-2419.	10.0	10
50	Intracellular transport: Small 19/2009. Small, 2009, 5, NA-NA.	10.0	0
51	Controlled Intracellular Release of Peptides from Microcapsules Enhances Antigen Presentation on MHC Class I Molecules. Small, 2009, 5, 2168-2176.	10.0	111
52	Chapter 2 Functionalized Liposomes. Behavior Research Methods, 2008, 7, 39-58.	4.0	2
53	Multifunctionalized Polymer Microcapsules: Novel Tools for Biological and Pharmacological Applications. Small, 2007, 3, 944-955.	10.0	223