Glyn P Hallam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6681527/publications.pdf

Version: 2024-02-01

	840776	888059
945	11	17
citations	h-index	g-index
1.0	10	1074
19	19	1374
docs citations	times ranked	citing authors
	citations 19	945 11 citations h-index 19 19

#	Article	IF	CITATIONS
1	Exploring the role of the posterior middle temporal gyrus in semantic cognition: Integration of anterior temporal lobe with executive processes. Neurolmage, 2016, 137, 165-177.	4.2	290
2	Automatic and Controlled Semantic Retrieval: TMS Reveals Distinct Contributions of Posterior Middle Temporal Gyrus and Angular Gyrus. Journal of Neuroscience, 2015, 35, 15230-15239.	3.6	172
3	Representing Representation: Integration between the Temporal Lobe and the Posterior Cingulate Influences the Content and Form of Spontaneous Thought. PLoS ONE, 2016, 11, e0152272.	2.5	126
4	The Neural Correlates of Emotion Regulation by Implementation Intentions. PLoS ONE, 2015, 10, e0119500.	2.5	102
5	Charting the effects of TMS with fMRI: Modulation of cortical recruitment within the distributed network supporting semantic control. Neuropsychologia, 2016, 93, 40-52.	1.6	56
6	Shared neural processes support semantic control and action understanding. Brain and Language, 2015, 142, 24-35.	1.6	36
7	The neural correlates of regulating another person's emotions: an exploratory fMRI study. Frontiers in Human Neuroscience, 2014, 8, 376.	2.0	34
8	Task-based and resting-state fMRI reveal compensatory network changes following damage to left inferior frontal gyrus. Cortex, 2018, 99, 150-165.	2.4	34
9	Semantic control deficits impair understanding of thematic relationships more than object identity. Neuropsychologia, 2017, 104, 113-125.	1.6	27
10	Shared processes resolve competition within and between episodic and semantic memory: Evidence from patients with LIFG lesions. Cortex, 2018, 108, 127-143.	2.4	27
11	An amygdala response to fearful faces with covered eyes. Neuropsychologia, 2008, 46, 2364-2370.	1.6	13
12	Control the source: Source memory for semantic, spatial and self-related items in patients with LIFG lesions. Cortex, 2019, 119, 165-183.	2.4	13
13	The interplay between control processes and feature relevance: Evidence from dual-task methodology. Quarterly Journal of Experimental Psychology, 2020, 73, 384-395.	1.1	4
14	Damage to temporoparietal cortex is sufficient for impaired semantic control. Cortex, 2022, 156, 71-85.	2.4	4
15	Motivated semantic control: Exploring the effects of extrinsic reward and selfâ€reference on semantic retrieval in semantic aphasia. Journal of Neuropsychology, 2022, 16, 407-433.	1.4	3
16	When comprehension elicits incomprehension: Deterioration of semantic categorisation in the absence of stimulus repetition. Quarterly Journal of Experimental Psychology, 2018, 71, 1817-1843.	1.1	2
17	Deficits of semantic control disproportionately affect low-relevance conceptual features: evidence from semantic aphasia. Aphasiology, 2021, 35, 1448-1462.	2.2	1
18	Training flexible conceptual retrieval in post-stroke aphasia. Neuropsychological Rehabilitation, 2021, , 1-27.	1.6	0