
Howard D Grimes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6681510/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Creating a â€~Collaboratory' environment to transcend traditional research barriers: Insights from the United States. Energy Research and Social Science, 2016, 19, 37-38.	3.0	Ο
2	Cell Type-Specific Transcriptome Analysis of the Soybean Leaf Paraveinal Mesophyll Layer. Plant Molecular Biology Reporter, 2013, 31, 210-221.	1.0	4
3	LICENSING AGRICULTURAL INTELLECTUAL PROPERTY: HOW SHOULD PUBLIC R&D INSTITUTIONS IN DEVELOPING COUNTRIES RESPOND?. International Journal of Innovation and Technology Management, 2012, 09, 1250028.	0.8	5
4	Assessing the Biosynthetic Capabilities of Secretory Glands in <i>Citrus</i> Peel Â. Plant Physiology, 2012, 159, 81-94.	2.3	82
5	Managing intellectual property and technology commercialization: Comparison and analysis of practices, success stories and lessons learned from public research universities in developing Asia. Innovation: Management, Policy and Practice, 2012, 14, 478-494.	2.6	13
6	Status of national intellectual property rights (IPRs) systems and its impact to agricultural development: a time series cross section data analysis of TRIPS member-countries. International Journal of Intellectual Property Management, 2012, 5, 82.	0.2	2
7	The impact of socio-demographic factors as potential predictors of the attitudes of public sector personnel on intellectual property rights and their implications. International Journal of Intellectual Property Management, 2012, 5, 199.	0.2	0
8	Experimental sink removal induces stress responses, including shifts in amino acid and phenylpropanoid metabolism, in soybean leaves. Planta, 2012, 235, 939-954.	1.6	12
9	Soybean vegetative lipoxygenases are not vacuolar storage proteins. Functional Plant Biology, 2011, 38, 778.	1.1	5
10	How agricultural biotechnology scientists perceive intellectual property rights (IPRs) and their implications: insights from developing Asia. International Journal of Intellectual Property Management, 2011, 4, 220.	0.2	1
11	Biochemical Characterization, Kinetic Analysis and Molecular Modeling of Recombinant Vegetative Lipoxygenases from Soybean. International Journal of Biology, 2010, 3, .	0.1	1
12	Protecting and preserving traditional knowledge and plant genetic resources: is ASEAN there yet?. Plant Genetic Resources: Characterisation and Utilisation, 2010, 8, 26-34.	0.4	2
13	Physcomitrella patens has lipoxygenases for both eicosanoid and octadecanoid pathways. Phytochemistry, 2009, 70, 40-52.	1.4	43
14	Crystal structures of vegetative soybean lipoxygenase VLX-B and VLX-D, and comparisons with seed isoforms LOX-1 and LOX-3. Proteins: Structure, Function and Bioinformatics, 2006, 65, 1008-1020.	1.5	53
15	The functional status of paraveinal mesophyll vacuoles changes in response to altered metabolic conditions in soybean leaves. Functional Plant Biology, 2005, 32, 335.	1.1	8
16	Protein sorting and expression of a unique soybean cotyledon protein, GmSBP, destined for the protein storage vacuole. Plant Molecular Biology, 2003, 52, 1089-1106.	2.0	13
17	The biochemical origin of pentenol emissions from wounded leaves. Phytochemistry, 2003, 62, 159-163.	1.4	41
18	Identification and characterization of a sucrose transporter isolated from the developing cotyledons of souhean. Archives of Biochemistry and Biophysics, 2003, 409, 243-250	1.4	21

HOWARD D GRIMES

#	Article	IF	CITATIONS
19	Activity of Soybean Lipoxygenase Isoforms against Esterified Fatty Acids Indicates Functional Specificity. Archives of Biochemistry and Biophysics, 2001, 388, 146-154.	1.4	42
20	Specific Lipoxygenase Isoforms Accumulate in Distinct Regions of Soybean Pod Walls and Mark a Unique Cell Layer. Plant Physiology, 2000, 123, 1269-1280.	2.3	23
21	The Mid-Pericarp Cell Layer in Soybean Pod Walls Is a Multicellular Compartment Enriched in Specific Lipoxygenase Isoforms. Plant Physiology, 2000, 123, 1281-1288.	2.3	17
22	Protein dynamics, activity and cellular localization of soybean lipoxygenases indicate distinct functional roles for individual isoforms. Plant Journal, 1999, 19, 543-554.	2.8	49
23	Specific Soybean Lipoxygenases Localize to Discrete Subcellular Compartments and Their mRNAs Are Differentially Regulated by Source-Sink Status1. Plant Physiology, 1998, 116, 923-933.	2.3	42
24	Â-Tonoplast intrinsic protein defines unique plant vacuole functions. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 12995-12999.	3.3	128
25	A Plasma Membrane Sucrose-binding Protein That Mediates Sucrose Uptake Shares Structural and Sequence Similarity with Seed Storage Proteins but Remains Functionally Distinct. Journal of Biological Chemistry, 1997, 272, 15898-15904.	1.6	30
26	Functional characterization of sucrose binding protein-mediated sucrose uptake in yeast. Journal of Experimental Botany, 1996, 47, 1217-1222.	2.4	17
27	Sink Limitation Induces the Expression of Multiple Soybean Vegetative Lipoxygenase mRNAs while the Endogenous Jasmonic Acid Level Remains Low. Plant Cell, 1995, 7, 1319.	3.1	1
28	Sink limitation induces the expression of multiple soybean vegetative lipoxygenase mRNAs while the endogenous jasmonic acid level remains low Plant Cell, 1995, 7, 1319-1331.	3.1	75
29	The Effects of High Salinity, Water-Deficit, and Abscisic Acid on Phosphoeno/pyruvate Carboxylase Activity and Proline Accumulation in Mesembryanthemum crystallinum Cell Cultures. Journal of Plant Physiology, 1995, 145, 557-564.	1.6	28
30	Expression, Activity, and Cellular Accumulation of Methyl Jasmonate-Responsive Lipoxygenase in Soybean Seedlings. Plant Physiology, 1992, 100, 433-443.	2.3	69
31	Biotinylation of Cell Surface Proteins in Carrot Suspension Cells. Journal of Plant Physiology, 1991, 139, 45-51.	1.6	6
32	Induction of soybean vegetative storage proteins and anthocyanins by low-level atmospheric methyl jasmonate Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 6745-6749.	3.3	186
33	The Soybean 94-Kilodalton Vegetative Storage Protein Is a Lipoxygenase That Is Localized in Paraveinal Mesophyll Cell Vacuoles. Plant Cell, 1991, 3, 973.	3.1	33
34	The Inorganic NO3-: NH4+ ratio Influences Plant Regeneration and Auxin Sensitivity in Primary Callus Derived from Immature Embryos of Indica Rice (Oryza sativa L.). Journal of Plant Physiology, 1990, 136, 362-367.	1.6	74
35	Plasma membrane proteins associated with undifferentiated and embryonicDaucus carota tissue. Protoplasma, 1989, 150, 139-149.	1.0	9
36	Plant regeneration from indica rice (Oryza sativa L.) protoplasts. Planta, 1989, 178, 325-333.	1.6	82

HOWARD D GRIMES

#	Article	IF	CITATIONS
37	Latent nitrate reductase activity is associated with the plasma membrane of corn roots. Planta, 1989, 177, 470-475.	1.6	70
38	Stable transformation of maize: the impact of feeder cells on protoplast growth and transformation efficiency. Plant Cell Reports, 1989, 8, 292-5.	2.8	20
39	Regeneration of Indica Rice (Oryza sativa L.) from Primary Callus Derived from Immature Embryos. Journal of Plant Physiology, 1989, 135, 184-190.	1.6	47
40	Plasma membrane isolated with a defined orientation used to investigate protein topography. Biochimica Et Biophysica Acta - Biomembranes, 1986, 862, 165-177.	1.4	10
41	α-Difluoromethylarginine treatment inhibits protoplast fusion in fusogenic wild-carrot protoplasts. Biochimica Et Biophysica Acta - Molecular Cell Research, 1986, 886, 130-134.	1.9	17
42	A novel method for monitoring protoplast fusion. Protoplasma, 1985, 124, 65-70.	1.0	16
43	Intracellular Calcium and Calmodulin Involvement in Protoplast Fusion. Plant Physiology, 1985, 79, 253-258.	2.3	17
44	Calcium-induced fusion of fusogenic wild carrot protoplasts. Protoplasma, 1984, 120, 209-215.	1.0	30
45	Influence oF Pseudomonas putida on nodulation of Phaseolus vulgaris. Soil Biology and Biochemistry, 1984, 16, 27-30.	4.2	106
46	Ozone Degrades into Hydroxyl Radical under Physiological Conditions. Plant Physiology, 1983, 72, 1016-1020.	2.3	170