
## Lingyun Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6681446/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | On-Demand Dissolvable Self-Healing Hydrogel Based on Carboxymethyl Chitosan and Cellulose<br>Nanocrystal for Deep Partial Thickness Burn Wound Healing. ACS Applied Materials & Interfaces,<br>2018, 10, 41076-41088.      | 4.0 | 351       |
| 2  | Synthesis and pH sensitivity of carboxymethyl chitosan-based polyampholyte hydrogels for protein carrier matrices. Biomaterials, 2004, 25, 3725-3732.                                                                      | 5.7 | 281       |
| 3  | Effects of high pressure homogenization on faba bean protein aggregation in relation to solubility and interfacial properties. Food Hydrocolloids, 2018, 83, 275-286.                                                      | 5.6 | 192       |
| 4  | Injectable Self-Healing Hydrogel with Antimicrobial and Antifouling Properties. ACS Applied Materials<br>& Interfaces, 2017, 9, 9221-9225.                                                                                 | 4.0 | 145       |
| 5  | Fabrication of robust and compressive chitin and graphene oxide sponges for removal of microplastics with different functional groups. Chemical Engineering Journal, 2020, 393, 124796.                                    | 6.6 | 140       |
| 6  | Strong and Rapidly Selfâ€Healing Hydrogels: Potential Hemostatic Materials. Advanced Healthcare<br>Materials, 2016, 5, 2813-2822.                                                                                          | 3.9 | 138       |
| 7  | Highly Porous, Hydrophobic, and Compressible Cellulose Nanocrystals/Poly(vinyl alcohol) Aerogels<br>as Recyclable Absorbents for Oil–Water Separation. ACS Sustainable Chemistry and Engineering, 2019,<br>7, 11118-11128. | 3.2 | 136       |
| 8  | Noncompressible Hemostasis and Bone Regeneration Induced by an Absorbable Bioadhesive Selfâ€Healing<br>Hydrogel. Advanced Functional Materials, 2021, 31, 2009189.                                                         | 7.8 | 133       |
| 9  | Impacts of nanowhisker on formation kinetics and properties of all-cellulose composite gels.<br>Carbohydrate Polymers, 2011, 83, 1937-1946.                                                                                | 5.1 | 123       |
| 10 | Functionality of Barley Proteins Extracted and Fractionated by Alkaline and Alcohol Methods. Cereal<br>Chemistry, 2010, 87, 597-606.                                                                                       | 1.1 | 97        |
| 11 | Effect of ultrasound-assisted alkaline treatment on functional property modifications of faba bean protein. Food Chemistry, 2021, 354, 129494.                                                                             | 4.2 | 95        |
| 12 | Injectable, Self-Healing Hydrogel with Tunable Optical, Mechanical, and Antimicrobial Properties.<br>Chemistry of Materials, 2019, 31, 2366-2376.                                                                          | 3.2 | 86        |
| 13 | Cellulose Nanowhiskers and Fiber Alignment Greatly Improve Mechanical Properties of Electrospun<br>Prolamin Protein Fibers. ACS Applied Materials & Interfaces, 2014, 6, 1709-1718.                                        | 4.0 | 79        |
| 14 | Development of Self-Cross-Linked Soy Adhesive by Enzyme Complex from <i>Aspergillus niger</i> for<br>Production of All-Biomass Composite Materials. ACS Sustainable Chemistry and Engineering, 2019, 7,<br>3909-3916.      | 3.2 | 79        |
| 15 | Nano-encapsulations liberated from barley protein microparticles for oral delivery of bioactive compounds. International Journal of Pharmaceutics, 2011, 406, 153-162.                                                     | 2.6 | 78        |
| 16 | Effects of enzymatic hydrolysis and ultrafiltration on physicochemical and functional properties of faba bean protein. Cereal Chemistry, 2019, 96, 725-741.                                                                | 1.1 | 78        |
| 17 | Biodegradable and re-usable sponge materials made from chitin for efficient removal of microplastics.<br>Journal of Hazardous Materials, 2021, 420, 126599.                                                                | 6.5 | 77        |
| 18 | Enhanced emulsifying properties of wood-based cellulose nanocrystals as Pickering emulsion stabilizer. Carbohydrate Polymers, 2017, 169, 295-303.                                                                          | 5.1 | 75        |

LINGYUN CHEN

| #  | Article                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Fabrication, characterization and controlled release properties of oat protein gels with percolating structure induced by cold gelation. Food Hydrocolloids, 2017, 62, 21-34.                        | 5.6 | 75        |
| 20 | Biocompatible and Biodegradable Bioplastics Constructed from Chitin via a "Green―Pathway for Bone<br>Repair. ACS Sustainable Chemistry and Engineering, 2017, 5, 9126-9135.                          | 3.2 | 71        |
| 21 | Impacts of pH and heating temperature on formation mechanisms and properties of thermally induced canola protein gels. Food Hydrocolloids, 2014, 40, 225-236.                                        | 5.6 | 68        |
| 22 | Mechanically Strong Chitin Fibers with Nanofibril Structure, Biocompatibility, and Biodegradability.<br>Chemistry of Materials, 2019, 31, 2078-2087.                                                 | 3.2 | 66        |
| 23 | Improved thermal gelation of oat protein with the formation of controlled phase-separated networks using dextrin and carrageenan polysaccharides. Food Research International, 2016, 82, 95-103.     | 2.9 | 65        |
| 24 | Chitin Nanofibrils to Stabilize Long-Life Pickering Foams and Their Application for Lightweight Porous<br>Materials. ACS Sustainable Chemistry and Engineering, 2018, 6, 10552-10561.                | 3.2 | 61        |
| 25 | Electrospinning of Prolamin Proteins in Acetic Acid: The Effects of Protein Conformation and Aggregation in Solution. Macromolecular Materials and Engineering, 2012, 297, 902-913.                  | 1.7 | 60        |
| 26 | Fabrication and characterization of novel assembled prolamin protein nanofabrics with improved stability, mechanical property and release profiles. Journal of Materials Chemistry, 2012, 22, 21592. | 6.7 | 59        |
| 27 | Inulin at low concentrations significantly improves the gelling properties of oat protein – A molecular mechanism study. Food Hydrocolloids, 2015, 50, 116-127.                                      | 5.6 | 55        |
| 28 | Consequences of heating under alkaline pH alone or in the presence of maltodextrin on solubility,<br>emulsifying and foaming properties of faba bean protein. Food Hydrocolloids, 2021, 112, 106335. | 5.6 | 54        |
| 29 | Elaboration and characterization of barley protein nanoparticles as an oral delivery system for lipophilic bioactive compounds. Food and Function, 2014, 5, 92-101.                                  | 2.1 | 50        |
| 30 | One-step synthesis of size-tunable gold nanoparticles immobilized on chitin nanofibrils via green pathway and their potential applications. Chemical Engineering Journal, 2017, 315, 573-582.        | 6.6 | 44        |
| 31 | Stretchable, tough, self-recoverable, and cytocompatible chitosan/cellulose<br>nanocrystals/polyacrylamide hybrid hydrogels. Carbohydrate Polymers, 2019, 222, 114977.                               | 5.1 | 44        |
| 32 | Metal solubility enhancing peptides derived from barley protein. Food Chemistry, 2014, 159, 498-506.                                                                                                 | 4.2 | 40        |
| 33 | Facile Preparation of Self-Standing Hierarchical Porous Nitrogen-Doped Carbon Fibers for<br>Supercapacitors from Plant Protein–Lignin Electrospun Fibers. ACS Omega, 2018, 3, 4647-4656.             | 1.6 | 38        |
| 34 | Rapid dissolution of spruce cellulose in H2SO4 aqueous solution at low temperature. Cellulose, 2016, 23, 3463-3473.                                                                                  | 2.4 | 29        |
| 35 | Controlled production of spruce cellulose gels using an environmentally "green―system. Cellulose,<br>2014, 21, 1667-1678.                                                                            | 2.4 | 23        |
| 36 | Convenient Fabrication of Electrospun Prolamin Protein Delivery System with Three-Dimensional<br>Shapeability and Resistance to Fouling. ACS Applied Materials & Interfaces, 2015, 7, 13422-13430.   | 4.0 | 16        |

LINGYUN CHEN

| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Mechanically Strong and Highly Tough Prolamin Protein Hydrogels Designed from<br>Double-Cross-Linked Assembled Networks. ACS Applied Polymer Materials, 2019, 1, 1272-1279.                                                    | 2.0 | 16        |
| 38 | Transition Metal Ions Enable the Transition from Electrospun Prolamin Protein Fibers to<br>Nitrogen-Doped Freestanding Carbon Films for Flexible Supercapacitors. ACS Applied Materials &<br>Interfaces, 2017, 9, 23731-23740. | 4.0 | 15        |
| 39 | Soluble Pea Protein Aggregates Form Strong Gels in the Presence of κ-Carrageenan. ACS Food Science & Technology, 2021, 1, 1605-1614.                                                                                           | 1.3 | 15        |
| 40 | Applications of Plant Polymer-Based Solid Foams: Current Trends in the Food Industry. Applied Sciences (Switzerland), 2021, 11, 9605.                                                                                          | 1.3 | 11        |
| 41 | One-step programmable electrofabrication of chitosan asymmetric hydrogels with 3D shape deformation. Carbohydrate Polymers, 2022, 277, 118888.                                                                                 | 5.1 | 4         |