Robert Wojcieszak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6681372/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	How Catalysts and Experimental Conditions Determine the Selective Hydroconversion of Furfural and 5-Hydroxymethylfurfural. Chemical Reviews, 2018, 118, 11023-11117.	23.0	585
2	Magnetic nanomaterials in catalysis: advanced catalysts for magnetic separation and beyond. Green Chemistry, 2014, 16, 2906.	4.6	504
3	Highlights and challenges in the selective reduction of carbon dioxide to methanol. Nature Reviews Chemistry, 2021, 5, 564-579.	13.8	253
4	Hydrogen storage in nickel catalysts supported on activated carbon. International Journal of Hydrogen Energy, 2007, 32, 1024-1032.	3.8	141
5	Nickel containing MCM-41 and AlMCM-41 mesoporous molecular sievesCharacteristics and activity in the hydrogenation of benzene. Applied Catalysis A: General, 2004, 268, 241-253.	2.2	134
6	Recent developments in maleic acid synthesis from bio-based chemicals. Sustainable Chemical Processes, 2015, 3, .	2.3	131
7	Levoglucosan: a promising platform molecule?. Green Chemistry, 2020, 22, 5859-5880.	4.6	109
8	Determination of the Size of Supported Pd Nanoparticles by X-ray Photoelectron Spectroscopy. Comparison with X-ray Diffraction, Transmission Electron Microscopy, and H ₂ Chemisorption Methods. Journal of Physical Chemistry C, 2010, 114, 16677-16684.	1.5	93
9	Study of nickel nanoparticles supported on activated carbon prepared by aqueous hydrazine reduction. Journal of Colloid and Interface Science, 2006, 299, 238-248.	5.0	85
10	Hydrogen storage on nickel catalysts supported on amorphous activated carbon. Catalysis Communications, 2005, 6, 777-783.	1.6	80
11	Insights into the active surface species formed on Ta2O5 nanotubes in the catalytic oxidation of CO. Physical Chemistry Chemical Physics, 2014, 16, 5755.	1.3	76
12	Easy Access to Metallic Copper Nanoparticles with High Activity and Stability for CO Oxidation. ACS Applied Materials & Interfaces, 2015, 7, 7987-7994.	4.0	75
13	Selective hydrogenation of CO 2 into CO on a highly dispersed nickel catalyst obtained by magnetron sputtering deposition: A step towards liquid fuels. Applied Catalysis B: Environmental, 2017, 209, 240-246.	10.8	73
14	Study of nickel catalysts supported on Al2O3, SiO2 or Nb2O5 oxides. Journal of Molecular Catalysis A, 2005, 242, 81-90.	4.8	72
15	Study of mesoporous CdS-quantum-dot-sensitized TiO ₂ films by using X-ray photoelectron spectroscopy and AFM. Beilstein Journal of Nanotechnology, 2014, 5, 68-76.	1.5	61
16	Elucidating the structure of the graphitic carbon nitride nanomaterials <i>via</i> X-ray photoelectron spectroscopy and X-ray powder diffraction techniques. Dalton Transactions, 2020, 49, 12805-12813.	1.6	60
17	Influence of Support Basic Sites in Green Oxidation of Biobased Substrates Using Au-Promoted Catalysts. ACS Sustainable Chemistry and Engineering, 2018, 6, 16332-16340.	3.2	59
18	Selective oxidation of glucose to glucuronic acid by cesium-promoted gold nanoparticle catalyst. Journal of Molecular Catalysis A, 2016, 422, 35-42.	4.8	55

#	Article	IF	CITATIONS
19	Ni–Ce intermetallic phases in CeO2-supported nickel catalysts synthesized by γ-radiolysis. Catalysis Today, 2006, 113, 157-165.	2.2	49
20	Direct dehydration of 1,3-butanediol into butadiene over aluminosilicate catalysts. Catalysis Science and Technology, 2016, 6, 5830-5840.	2.1	49
21	From sequential chemoenzymatic synthesis to integrated hybrid catalysis: taking the best of both worlds to open up the scope of possibilities for a sustainable future. Catalysis Science and Technology, 2018, 8, 5708-5734.	2.1	46
22	Ni Promotion by Fe: What Benefits for Catalytic Hydrogenation?. Catalysts, 2019, 9, 451.	1.6	46
23	Bimetallic Fe-Ni/SiO2 catalysts for furfural hydrogenation: Identification of the interplay between Fe and Ni during deposition-precipitation and thermal treatments. Catalysis Today, 2019, 334, 162-172.	2.2	46
24	Advances in Base-Free Oxidation of Bio-Based Compounds on Supported Gold Catalysts. Catalysts, 2017, 7, 352.	1.6	45
25	Identification of efficient promoters and selectivity trends in high temperature Fischer-Tropsch synthesis over supported iron catalysts. Applied Catalysis B: Environmental, 2020, 273, 119028.	10.8	45
26	Study of Ni–Ag/SiO2 catalysts prepared by reduction in aqueous hydrazine. Journal of Colloid and Interface Science, 2008, 317, 166-174.	5.0	43
27	Nickel niobia interaction in non-classical Ni/Nb2O5 catalysts. Journal of Molecular Catalysis A, 2006, 256, 225-233.	4.8	42
28	Characterization of alumina- and niobia-supported gold catalysts used for oxidation of glycerol. Applied Catalysis A: General, 2010, 384, 70-77.	2.2	42
29	Influence of High Temperature Synthesis on the Structure of Graphitic Carbon Nitride and Its Hydrogen Generation Ability. Materials, 2020, 13, 2756.	1.3	41
30	Hydroconversion of 5â€Hydroxymethylfurfural to 2,5â€Dimethylfuran and 2,5â€Dimethyltetrahydrofuran over Nonâ€promoted Ni/SBAâ€15. ChemCatChem, 2020, 12, 2050-2059.	1.8	41
31	New Nb and Ta–FAU zeolites—Direct synthesis, characterisation and surface properties. Catalysis Today, 2010, 158, 170-177.	2.2	39
32	Active phases for high temperature Fischer-Tropsch synthesis in the silica supported iron catalysts promoted with antimony and tin. Applied Catalysis B: Environmental, 2021, 292, 120141.	10.8	35
33	Oxidation of methanol to methyl formate over supported Pd nanoparticles: insights into the reaction mechanism at low temperature. Catalysis Science and Technology, 2014, 4, 3298-3305.	2.1	32
34	Combining active phase and support optimization in MnO2-Au nanoflowers: Enabling high activities towards green oxidations. Journal of Colloid and Interface Science, 2018, 530, 282-291.	5.0	32
35	Low temperature oxidation of methanol to methyl formate over Pd nanoparticles supported on Î ³ -Fe2O3. Catalysis Science and Technology, 2014, 4, 738.	2.1	30
36	Biomass-derived Platform Molecules Upgrading through Catalytic Processes: Yielding Chemicals and Fuels. Journal of the Japan Petroleum Institute, 2015, 58, 257-273.	0.4	29

#	Article	IF	CITATIONS
37	Au-based bimetallic catalysts: how the synergy between two metals affects their catalytic activity. RSC Advances, 2019, 9, 29888-29901.	1.7	29
38	Efficient Promoters and Reaction Paths in the CO ₂ Hydrogenation to Light Olefins over Zirconia-Supported Iron Catalysts. ACS Catalysis, 2022, 12, 3211-3225.	5.5	29
39	Recent Advances in Carboxylation of Furoic Acid into 2,5â€Furandicarboxylic Acid: Pathways towards Bioâ€Based Polymers. ChemSusChem, 2020, 13, 5164-5172.	3.6	28
40	Dehydration of Lactic Acid: The State of The Art. ChemBioEng Reviews, 2018, 5, 34-56.	2.6	27
41	Engineering the future: Perspectives in the 2,5-furandicarboxylic acid synthesis. Catalysis Today, 2020, 354, 211-217.	2.2	27
42	Preparation of nickel (oxide) nanoparticles confined in the secondary pore network of mesoporous scaffolds using melt infiltration. Catalysis Today, 2019, 334, 48-58.	2.2	26
43	Catalytic decarboxylation of fatty acids to hydrocarbons over nonâ€noble metal catalysts: the state of the art. Journal of Chemical Technology and Biotechnology, 2019, 94, 658-669.	1.6	25
44	Liquid Phase Furfural Oxidation under Uncontrolled pH in Batch and Flow Conditions: The Role of In Situ Formed Base. Catalysts, 2020, 10, 73.	1.6	23
45	A soft-chemistry assisted strong metal–support interaction on a designed plasmonic core–shell photocatalyst for enhanced photocatalytic hydrogen production. Nanoscale, 2020, 12, 7011-7023.	2.8	23
46	Furfural Oxidation on Gold Supported on MnO2: Influence of the Support Structure on the Catalytic Performances. Applied Sciences (Switzerland), 2018, 8, 1246.	1.3	22
47	Cyclohexane Oxidation to Adipic Acid Under Green Conditions: A Scalable and Sustainable Process. ChemCatChem, 2018, 10, 3680-3682.	1.8	21
48	Efficient Oxidative Esterification of Furfural Using Au Nanoparticles Supported on Group 2 Alkaline Earth Metal Oxides. Catalysts, 2020, 10, 430.	1.6	21
49	Direct Methyl Formate Formation from Methanol over Supported Palladium Nanoparticles at Low Temperature. ChemCatChem, 2013, 5, 339-348.	1.8	20
50	Selective aqueous phase hydrogenation of xylose to xylitol over SiO2-supported Ni and Ni-Fe catalysts: Benefits of promotion by Fe. Applied Catalysis B: Environmental, 2021, 298, 120564.	10.8	20
51	Fully integrated high-throughput methodology for the study of Ni- and Cu-supported catalysts for glucose hydrogenation. Catalysis Today, 2019, 338, 72-80.	2.2	19
52	Enhancing the activity of gold supported catalysts by oxide coating: towards efficient oxidations. Green Chemistry, 2021, 23, 8453-8457.	4.6	19
53	NiAg catalysts prepared by reduction of Ni2+ ions in aqueous hydrazine. Journal of Colloid and Interface Science, 2009, 332, 416-424.	5.0	18
54	Optimisation of catalysts coupling in multi-catalytic hybrid materials: perspectives for the next revolution in catalysis. Green Chemistry, 2021, 23, 1942-1954.	4.6	18

#	Article	IF	CITATIONS
55	Plasmon-Induced Electrocatalysis with Multi-Component Nanostructures. Materials, 2019, 12, 43.	1.3	17
56	Exploiting the Synergetic Behavior of PtPd Bimetallic Catalysts in the Selective Hydrogenation of Glucose and Furfural. Catalysts, 2019, 9, 132.	1.6	17
57	Mobility and versatility of the liquid bismuth promoter in the working iron catalysts for light olefin synthesis from syngas. Chemical Science, 2020, 11, 6167-6182.	3.7	17
58	CuxCryOz mixed oxide as a promising support for gold – The effect of Au loading method on the effectiveness in oxidation reactions. Catalysis Today, 2012, 187, 48-55.	2.2	16
59	Modulation of the selectivity in partial oxidation of methanol over CuZnAl catalysts by adding CO 2 and/or H 2 into the reaction feed. Applied Catalysis B: Environmental, 2015, 168-169, 14-24.	10.8	16
60	Hybrid Conversion of <i>5</i> â€Hydroxymethylfurfural to <i>5</i> â€Aminomethylâ€ <i>2</i> â€furancarboxylic acid: Toward New Bioâ€sourced Polymers. ChemCatChem, 2021, 13, 247-259.	1.8	16
61	Supported Pd nanoparticles prepared by a modified water-in-oil microemulsion method. Studies in Surface Science and Catalysis, 2010, , 789-792.	1.5	15
62	Catalytic abatement of CO over highly stable Pt supported on Ta2O5 nanotubes. Catalysis Communications, 2014, 48, 50-54.	1.6	15
63	5-Hydroxymethylfurfural and Furfural Base-Free Oxidation over AuPd Embedded Bimetallic Nanoparticles. Catalysts, 2020, 10, 75.	1.6	15
64	Lactic Acid Conversion to Acrylic Acid Over Fluoride-Substituted Hydroxyapatites. Frontiers in Chemistry, 2020, 8, 421.	1.8	15
65	Aerobic oxidation of 1,6-hexanediol to adipic acid over Au-based catalysts: the role of basic supports. Catalysis Science and Technology, 2020, 10, 2644-2651.	2.1	14
66	Micro-/mesopores confined ultrasmall Cu nanoparticles in SBA-15 as a highly efficient and robust catalyst for furfural hydrogenation to furfuryl alcohol. Applied Catalysis A: General, 2022, 633, 118527.	2.2	14
67	Multicatalytic Hybrid Materials for Biocatalytic and Chemoenzymatic Cascades—Strategies for Multicatalyst (Enzyme) Co-Immobilization. Catalysts, 2021, 11, 936.	1.6	13
68	Plasmon-enhanced electrocatalytic oxygen reduction in alkaline media on gold nanohole electrodes. Journal of Materials Chemistry A, 2020, 8, 10395-10401.	5.2	12
69	Probing the core and surface composition of nanoalloy to rationalize its selectivity: Study of Ni-Fe/SiO2 catalysts for liquid-phase hydrogenation. Chem Catalysis, 2022, 2, 1686-1708.	2.9	12
70	Synergetic Behavior of TiO ₂ ‣upported Pd(<i>z</i>)Pt(1â^' <i>z</i>) Catalysts in the Green Synthesis of Methyl Formate. ChemCatChem, 2016, 8, 1157-1166.	1.8	11
71	The importance of the shape of Cu2O nanocrystals on plasmon-enhanced oxygen evolution reaction in alkaline media. Electrochimica Acta, 2021, 390, 138810.	2.6	11
72	Effect of the Colloidal Preparation Method for Supported Preformed Colloidal Au Nanoparticles for the Liquid Phase Oxidation of 1,6-Hexanediol to Adipic Acid. Catalysts, 2022, 12, 196.	1.6	11

#	Article	IF	CITATIONS
73	Agroindustrial Wastes as a Support for the Immobilization of Lipase from Thermomyces lanuginosus: Synthesis of Hexyl Laurate. Biomolecules, 2021, 11, 445.	1.8	10
74	Insight on the promoting effect of Zr and Ti on the catalytic properties of Rh/SiO2 for partial oxidation of methane. Applied Catalysis A: General, 2010, 384, 220-229.	2.2	9
75	Low Temperatureâ€High Selectivity Process over Supported Pd Nanoparticles in Partial Oxidation of Methanol. ChemCatChem, 2012, 4, 72-75.	1.8	9
76	Synthesis and characterization of a magnetic hybrid catalyst containing lipase and palladium and its application on the dynamic kinetic resolution of amines. Molecular Catalysis, 2020, 493, 111106.	1.0	9
77	Ni/CeO2 catalysts prepared by aqueous hydrazine reduction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 317, 116-122.	2.3	8
78	Regioselective Acylation of Levoglucosan Catalyzed by Candida Antarctica (CaLB) Lipase Immobilized on Epoxy Resin. Sustainability, 2019, 11, 6044.	1.6	8
79	Effect of Modification of Amorphous Silica with Ammonium Agents on the Physicochemical Properties and Hydrogenation Activity of Ir/SiO2 Catalysts. Materials, 2021, 14, 968.	1.3	8
80	Study of the Direct CO2 Carboxylation Reaction on Supported Metal Nanoparticles. Catalysts, 2021, 11, 326.	1.6	8
81	Structure–performance correlations in the hybrid oxide-supported copper–zinc SAPO-34 catalysts for direct synthesis of dimethyl ether from CO2. Journal of Materials Science, 2022, 57, 3268-3279.	1.7	8
82	Hybrid monometallic and bimetallic copper–palladium zeolite catalysts for direct synthesis of dimethyl ether from CO ₂ . New Journal of Chemistry, 2022, 46, 3889-3900.	1.4	8
83	Effect of antigen site and complement receptor status on the rate of cleavage of C3c antigen from red cell bound C3b. Blood, 1988, 71, 786-790.	0.6	7
84	Incorporation of group five elements into the faujasite structure. Studies in Surface Science and Catalysis, 2010, , 445-448.	1.5	7
85	Restructuring of Goldâ€Palladium Alloyed Nanoparticles: A Step towards More Active Catalysts for Oxidation of Alcohols. ChemCatChem, 2019, 11, 4021-4027.	1.8	7
86	Raman Spectroscopy Applied to Monitor Furfural Liquid-Phase Oxidation Catalyzed by Supported Gold Nanoparticles. ACS Omega, 2020, 5, 14283-14290.	1.6	7
87	Lipase-catalyzed acylation of levoglucosan in continuous flow: antibacterial and biosurfactant studies. RSC Advances, 2022, 12, 3027-3035.	1.7	7
88	Ni-Fe alloying enhances the efficiency of the maltose hydrogenation process: The role of surface species and kinetic study. Applied Catalysis B: Environmental, 2022, 313, 121446.	10.8	7
89	Influence of the Preparation Method on Catalytic Properties of Pd/TiO2 Catalysts in the Reaction of Partial Oxidation of Methanol. Current Catalysis, 2013, 2, 27-34.	0.5	6
90	Influence of Pd and Pt Promotion in Gold Based Bimetallic Catalysts on Selectivity Modulation in Furfural Base-Free Oxidation. Catalysts, 2021, 11, 1226.	1.6	6

#	Article	IF	CITATIONS
91	Reductive Modification of Carbon Nitride Structure by Metals—The Influence on Structure and Photocatalytic Hydrogen Evolution. Materials, 2022, 15, 710.	1.3	6
92	Efficient non-noble Ni–Cu based catalysts for the valorization of palmitic acid through a decarboxylation reaction. Catalysis Science and Technology, 2021, 11, 3025-3038.	2.1	5
93	Studies of New Iridium Catalysts Supported on Modified Silicalite-1—Their Structure and Hydrogenating Properties. Materials, 2021, 14, 4465.	1.3	3
94	The Use of CO2 in the Production of Bioplastics for an Even Greener Chemistry. Sustainability, 2021, 13, 11278.	1.6	3
95	Effect of Rhenium on the Catalytic Activity of Activated Carbon-Supported Nickel Applied in the Hydrogenation of Furfural and Levulinic Acid. Topics in Catalysis, 0, , .	1.3	3
96	Strengthening the Connection between Science, Society and Environment to Develop Future French and European Bioeconomies: Cutting-Edge Research of VAALBIO Team at UCCS. Molecules, 2022, 27, 3889.	1.7	3
97	Oxidation of but-3-en-1,2-diol: Green access to hydroxymethionine intermediate. Catalysis Today, 2017, 279, 164-167.	2.2	2
98	One-pot organometallic synthesis of alumina-embedded Pd nanoparticles. Dalton Transactions, 2017, 46, 14318-14324.	1.6	2
99	Artificial Neural Networks To Distinguish Charcoal from <i>Eucalyptus</i> and Native Forests Based on Their Mineral Components. Energy & Fuels, 2020, 34, 9599-9608.	2.5	2
100	Versatility of Supported Gold Nanoparticles on Hydrotalcites used for Oxidation and Reduction Reactions. , 2021, 2, 1-1.		2
101	Getting Greener with the Synthesis of Nanoparticles and Nanomaterials. Nanomaterials, 2022, 12, 2452.	1.9	2
102	Fast and Highly Selective Continuous-Flow Catalytic Hydrogenation of a Cafestol–Kahweol Mixture Obtained from Green Coffee Beans. ACS Omega, 2020, 5, 25712-25722.	1.6	1
103	Pt Nanoparticles with Enhanced Deaminaseâ€like Activity: Example of Oxidative Deamination of 5â€Hydroxymethylfurfurylamine and Glutamic Acid. ChemNanoMat, 0, ,	1.5	0
104	Effect of antigen site and complement receptor status on the rate of cleavage of C3c antigen from red cell bound C3b. Blood, 1988, 71, 786-790.	0.6	0