
## Kazuo Kitamura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6681283/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A Flp-dependent G-CaMP9a transgenic mouse for neuronal imaging inÂvivo. Cell Reports Methods, 2022,<br>2, 100168.                                                                  | 2.9  | 9         |
| 2  | A database and deep learning toolbox for noise-optimized, generalized spike inference from calcium imaging. Nature Neuroscience, 2021, 24, 1324-1337.                              | 14.8 | 57        |
| 3  | Improved hyperacuity estimation of spike timing from calcium imaging. Scientific Reports, 2020, 10, 17844.                                                                         | 3.3  | 15        |
| 4  | Activation of the reward system ameliorates passive cutaneous anaphylactic reaction in mice. Allergy:<br>European Journal of Allergy and Clinical Immunology, 2020, 75, 3275-3279. | 5.7  | 2         |
| 5  | Rational Engineering of XCaMPs, a Multicolor GECI Suite for InÂVivo Imaging of Complex Brain Circuit<br>Dynamics. Cell, 2019, 177, 1346-1360.e24.                                  | 28.9 | 199       |
| 6  | mGluR1 in cerebellar Purkinje cells is essential for the formation but not expression of associative eyeblink memory. Scientific Reports, 2019, 9, 7353.                           | 3.3  | 10        |
| 7  | Modular organization of cerebellar climbing fiber inputs during goal-directed behavior. ELife, 2019, 8,                                                                            | 6.0  | 40        |
| 8  | Patchwork-Type Spontaneous Activity in Neonatal Barrel Cortex Layer 4 Transmitted via<br>Thalamocortical Projections. Cell Reports, 2018, 22, 123-135.                             | 6.4  | 74        |
| 9  | Serotonin rebalances cortical tuning and behavior linked to autism symptoms in 15q11-13 CNV mice.<br>Science Advances, 2017, 3, e1603001.                                          | 10.3 | 64        |
| 10 | Maturation of Cerebellar Purkinje Cell Population Activity during Postnatal Refinement of Climbing<br>Fiber Network. Cell Reports, 2017, 21, 2066-2073.                            | 6.4  | 19        |
| 11 | Dendritic Spikes in Sensory Perception. Frontiers in Cellular Neuroscience, 2017, 11, 29.                                                                                          | 3.7  | 21        |
| 12 | Structure–Function Relationships between Aldolase C/Zebrin II Expression and Complex Spike<br>Synchrony in the Cerebellum. Journal of Neuroscience, 2015, 35, 843-852.             | 3.6  | 66        |
| 13 | Rational design of a high-affinity, fast, red calcium indicator R-CaMP2. Nature Methods, 2015, 12, 64-70.                                                                          | 19.0 | 234       |
| 14 | A highly sensitive fluorescent indicator dye for calcium imaging of neural activity <i>in vitro</i> and <i>in vivo</i> . European Journal of Neuroscience, 2014, 39, 1720-1728.    | 2.6  | 120       |
| 15 | Two distinct layer-specific dynamics of cortical ensembles during learning of a motor task. Nature Neuroscience, 2014, 17, 987-994.                                                | 14.8 | 139       |
| 16 | Functional labeling of neurons and their projections using the synthetic activity–dependent<br>promoter E-SARE. Nature Methods, 2013, 10, 889-895.                                 | 19.0 | 166       |
| 17 | Dendritic calcium signaling in cerebellar Purkinje cell. Neural Networks, 2013, 47, 11-17.                                                                                         | 5.9  | 35        |
| 18 | Nonlinear Decoding and Asymmetric Representation of Neuronal Input Information by CaMKIIα and Calcineurin. Cell Reports, 2013, 3, 978-987                                          | 6.4  | 85        |

KAZUO KITAMURA

| #  | Article                                                                                                                                                                                                                                        | IF               | CITATIONS          |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------|
| 19 | Calciumâ€dependent regulation of climbing fibre synapse elimination during postnatal cerebellar<br>development. Journal of Physiology, 2013, 591, 3151-3158.                                                                                   | 2.9              | 16                 |
| 20 | Spatiotemporal Dynamics of Functional Clusters of Neurons in the Mouse Motor Cortex during a Voluntary Movement. Journal of Neuroscience, 2013, 33, 1377-1390.                                                                                 | 3.6              | 86                 |
| 21 | Spike timing-dependent selective strengthening of single climbing fibre inputs to Purkinje cells during cerebellar development. Nature Communications, 2013, 4, 2732.                                                                          | 12.8             | 35                 |
| 22 | Relationship between the Local Structure of Orientation Map and the Strength of Orientation Tuning of Neurons in Monkey V1: A 2-Photon Calcium Imaging Study. Journal of Neuroscience, 2013, 33, 16818-16827.                                  | 3.6              | 26                 |
| 23 | Disruption of cerebellar microzonal organization in GluD2 (GluRÎ′2) knockout mouse. Frontiers in<br>Neural Circuits, 2013, 7, 130.                                                                                                             | 2.8              | 20                 |
| 24 | 2SH-05 Two-photon imaging of the mouse motor cortex during voluntary skilled movement(2SH Star) Tj ETQq0 0                                                                                                                                     | 0 rgBT /C<br>0.1 | overlock 10 T<br>0 |
| 25 | Reinforcing operandum: rapid and reliable learning of skilled forelimb movements by head-fixed rodents. Journal of Neurophysiology, 2012, 108, 1781-1792.                                                                                      | 1.8              | 48                 |
| 26 | GABAergic Inhibition Regulates Developmental Synapse Elimination in the Cerebellum. Neuron, 2012, 74, 384-396.                                                                                                                                 | 8.1              | 90                 |
| 27 | Locally Synchronized Synaptic Inputs. Science, 2012, 335, 353-356.                                                                                                                                                                             | 12.6             | 280                |
| 28 | Two-Photon Targeted Patch-Clamp Recordings In Vivo. Springer Protocols, 2012, , 183-193.                                                                                                                                                       | 0.3              | 0                  |
| 29 | <i>In vivo</i> twoâ€photon uncaging of glutamate revealing the structure–function relationships of dendritic spines in the neocortex of adult mice. Journal of Physiology, 2011, 589, 2447-2457.                                               | 2.9              | 157                |
| 30 | Postsynaptic P/Q-type Ca <sup>2+</sup> channel in Purkinje cell mediates synaptic competition and elimination in developing cerebellum. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9987-9992. | 7.1              | 103                |
| 31 | Dendritic Calcium Signaling Triggered by Spontaneous and Sensory-Evoked Climbing Fiber Input to<br>Cerebellar Purkinje Cells In Vivo. Journal of Neuroscience, 2011, 31, 10847-10858.                                                          | 3.6              | 99                 |
| 32 | Spatial Pattern Coding of Sensory Information by Climbing Fiber-Evoked Calcium Signals in Networks of Neighboring Cerebellar Purkinje Cells. Journal of Neuroscience, 2009, 29, 8005-8015.                                                     | 3.6              | 125                |
| 33 | Targeted single-cell electroporation of mammalian neurons in vivo. Nature Protocols, 2009, 4, 862-869.                                                                                                                                         | 12.0             | 131                |
| 34 | Translocation of a "Winner―Climbing Fiber to the Purkinje Cell Dendrite and Subsequent Elimination<br>of "Losers―from the Soma in Developing Cerebellum. Neuron, 2009, 63, 106-118.                                                            | 8.1              | 161                |
| 35 | Targeted patch-clamp recordings and single-cell electroporation of unlabeled neurons in vivo.<br>Nature Methods, 2008, 5, 61-67.                                                                                                               | 19.0             | 332                |
| 36 | The diffusive search mechanism of processive myosin class-V motor involves directional steps along actin subunits. Biochemical and Biophysical Research Communications, 2007, 354, 379-384.                                                    | 2.1              | 31                 |

KAZUO KITAMURA

| #  | Article                                                                                                                                                                                                                    | IF      | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|
| 37 | Role of Multiple Bonds Between the Single Cell Adhesion Molecules, Nectin and Cadherin, Revealed by<br>High Sensitive Force Measurements. Journal of Molecular Biology, 2007, 367, 996-1006.                               | 4.2     | 44        |
| 38 | Purkinje cells in awake behaving animals operate in stable upstate membrane potential. Nature<br>Neuroscience, 2006, 9, 461-461.                                                                                           | 14.8    | 8         |
| 39 | Bistability of cerebellar Purkinje cells modulated by sensory stimulation. Nature Neuroscience, 2005,<br>8, 202-211.                                                                                                       | 14.8    | 292       |
| 40 | Mechanism of muscle contraction based on stochastic properties of single actomyosin motors observed in vitro. Biophysics (Nagoya-shi, Japan), 2005, 1, 1-19.                                                               | 0.4     | 49        |
| 41 | Stochastic properties of actomyosin motor. BioSystems, 2003, 71, 101-110.                                                                                                                                                  | 2.0     | 22        |
| 42 | [12] Molecular motors and single-molecule enzymology. Methods in Enzymology, 2003, 361, 228-245.                                                                                                                           | 1.0     | 6         |
| 43 | ã,¢ã,¯ãƒ^ミã,ªã,∙ンå^†åモーã,¿ãƒ¼ã®1å^†åé•動解枕 Journal of the Society of Biomechanisms, 2003, 27,                                                                                                                               | 609666. | 0         |
| 44 | Imaging And Nano-Manipulation Of Single Actomyosin Motors At Work. Clinical and Experimental Pharmacology and Physiology, 2000, 27, 229-237.                                                                               | 1.9     | 3         |
| 45 | Single molecule analysis of the actomyosin motor. Current Opinion in Cell Biology, 2000, 12, 20-25.                                                                                                                        | 5.4     | 69        |
| 46 | A Single Myosin Head Moves along an Actin Filament with Regular Steps during One Biochemical Cycle<br>of ATP Hydrolysis. Seibutsu Butsuri, 2000, 40, 89-93.                                                                | 0.1     | 1         |
| 47 | Single–motor mechanics and models of the myosin motor. Philosophical Transactions of the Royal<br>Society B: Biological Sciences, 2000, 355, 441-447.                                                                      | 4.0     | 45        |
| 48 | A single myosin head moves along an actin filament with regular steps of 5.3 nanometres. Nature, 1999,<br>397, 129-134.                                                                                                    | 27.8    | 543       |
| 49 | Myosin Subfragment-1 Is Fully Equipped with Factors Essential for Motor Function. Biochemical and Biophysical Research Communications, 1997, 230, 76-80.                                                                   | 2.1     | 47        |
| 50 | Subpiconewton Intermolecular Force Microscopy. Biochemical and Biophysical Research Communications, 1997, 231, 566-569.                                                                                                    | 2.1     | 45        |
| 51 | Single Molecule Imaging of Fluorophores and Enzymatic Reactions Achieved by Objective-Type Total<br>Internal Reflection Fluorescence Microscopy. Biochemical and Biophysical Research Communications,<br>1997, 235, 47-53. | 2.1     | 309       |
| 52 | Non-contact scanning probe microscopy with sub-piconewton force sensitivity. Ultramicroscopy, 1997, 70, 45-55.                                                                                                             | 1.9     | 32        |