Suzanne E Fenton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6681278/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Per―and Polyfluoroalkyl Substance Toxicity and Human Health Review: Current State of Knowledge and Strategies for Informing Future Research. Environmental Toxicology and Chemistry, 2021, 40, 606-630.	4.3	697
2	Cancer and developmental exposure to endocrine disruptors Environmental Health Perspectives, 2003, 111, 389-394.	6.0	384
3	Endocrine-Disrupting Compounds and Mammary Gland Development: Early Exposure and Later Life Consequences. Endocrinology, 2006, 147, s18-s24.	2.8	266
4	Phenotypic dichotomy following developmental exposure to perfluorooctanoic acid (PFOA) in female CD-1 mice: Low doses induce elevated serum leptin and insulin, and overweight in mid-lifeâ~†. Molecular and Cellular Endocrinology, 2009, 304, 97-105.	3.2	241
5	Endocrine disrupting properties of perfluorooctanoic acid. Journal of Steroid Biochemistry and Molecular Biology, 2011, 127, 16-26.	2.5	231
6	Early life exposure to per- and polyfluoroalkyl substances (PFAS) and latent health outcomes: A review including the placenta as a target tissue and possible driver of peri- and postnatal effects. Toxicology, 2020, 443, 152565.	4.2	210
7	Concentrations of Phthalate Metabolites in Milk, Urine, Saliva, and Serum of Lactating North Carolina Women. Environmental Health Perspectives, 2009, 117, 86-92.	6.0	207
8	Environmental Exposures and Mammary Gland Development: State of the Science, Public Health Implications, and Research Recommendations. Environmental Health Perspectives, 2011, 119, 1053-1061.	6.0	188
9	Gestational PFOA Exposure of Mice is Associated with Altered Mammary Gland Development in Dams and Female Offspring. Toxicological Sciences, 2006, 96, 133-144.	3.1	177
10	Developmental Exposure to a Commercial PBDE Mixture, DE-71: Neurobehavioral, Hormonal, and Reproductive Effects. Toxicological Sciences, 2010, 116, 297-312.	3.1	171
11	Developmental Toxicity of Perfluorooctanoic Acid in the CD-1 Mouse after Cross-Foster and Restricted Gestational Exposures. Toxicological Sciences, 2006, 95, 462-473.	3.1	156
12	Persistent Abnormalities in the Rat Mammary Gland following Gestational and Lactational Exposure to 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD). Toxicological Sciences, 2002, 67, 63-74.	3.1	154
13	Concentrations of environmental phenols and parabens in milk, urine and serum of lactating North Carolina women. Reproductive Toxicology, 2015, 54, 120-128.	2.9	146
14	Evaluation of Maternal, Embryo, and Placental Effects in CD-1 Mice following Gestational Exposure to Perfluorooctanoic Acid (PFOA) or Hexafluoropropylene Oxide Dimer Acid (HFPO-DA or GenX). Environmental Health Perspectives, 2020, 128, 27006.	6.0	141
15	Exposure to diethylstilbestrol during sensitive life stages: A legacy of heritable health effects. Birth Defects Research Part C: Embryo Today Reviews, 2013, 99, 134-146.	3.6	140
16	Associations between longitudinal serum perfluoroalkyl substance (PFAS) levels and measures of thyroid hormone, kidney function, and body mass index in the Fernald Community Cohort. Environmental Pollution, 2018, 242, 894-904.	7.5	132
17	Endocrine Disruptors and the Breast: Early Life Effects and Later Life Disease. Journal of Mammary Gland Biology and Neoplasia, 2013, 18, 43-61.	2.7	129
18	Exposure parameters necessary for delayed puberty and mammary gland development in Long–Evans rats exposed in utero to atrazine. Toxicology and Applied Pharmacology, 2004, 195, 23-34.	2.8	118

#	Article	IF	CITATIONS
19	Adverse Effects of Prenatal Exposure to Atrazine During a Critical Period of Mammary Gland Growth. Toxicological Sciences, 2005, 87, 255-266.	3.1	104
20	A Novel Effect of Dioxin: Exposure during Pregnancy Severely Impairs Mammary Cland Differentiation. Toxicological Sciences, 2004, 78, 248-257.	3.1	101
21	Gestational and Chronic Low-Dose PFOA Exposures and Mammary Gland Growth and Differentiation in Three Generations of CD-1 Mice. Environmental Health Perspectives, 2011, 119, 1070-1076.	6.0	99
22	Prenatal Perfluorooctanoic Acid Exposure in CD-1 Mice: Low-Dose Developmental Effects and Internal Dosimetry. Toxicological Sciences, 2011, 122, 134-145.	3.1	93
23	Polyfluoroalkyl chemicals in the serum and milk of breastfeeding women. Reproductive Toxicology, 2009, 27, 239-245.	2.9	90
24	Per- and poly-fluoroalkyl substances (PFAS) and female reproductive outcomes: PFAS elimination, endocrine-mediated effects, and disease. Toxicology, 2022, 465, 153031.	4.2	87
25	Evaluation of Prenatal Exposure to Bisphenol Analogues on Development and Long-Term Health of the Mammary Gland in Female Mice. Environmental Health Perspectives, 2018, 126, 087003.	6.0	83
26	Essential role of Orai1 store-operated calcium channels in lactation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5827-5832.	7.1	82
27	The mammary gland is a sensitive pubertal target in CD-1 and C57Bl/6 mice following perinatal perfluorooctanoic acid (PFOA) exposure. Reproductive Toxicology, 2015, 54, 26-36.	2.9	80
28	Perinatal Environmental Exposures Affect Mammary Development, Function, and Cancer Risk in Adulthood. Annual Review of Pharmacology and Toxicology, 2012, 52, 455-479.	9.4	75
29	Effects of perfluorooctanoic acid on mouse mammary gland development and differentiation resulting from cross-foster and restricted gestational exposures. Reproductive Toxicology, 2009, 27, 289-298.	2.9	74
30	Mammary Gland Development as a Sensitive End Point after Acute Prenatal Exposure to an Atrazine Metabolite Mixture in Female Long-Evans Rats. Environmental Health Perspectives, 2007, 115, 541-547.	6.0	73
31	Perfluorooctanoic Acid (PFOA)–induced Liver Lesions in Two Strains of Mice Following Developmental Exposures. Toxicologic Pathology, 2015, 43, 558-568.	1.8	70
32	Analysis of PFOA in dosed CD-1 mice. Part 2: Disposition of PFOA in tissues and fluids from pregnant and lactating mice and their pups. Reproductive Toxicology, 2009, 27, 365-372.	2.9	69
33	Effects of perfluorinated chemicals on thyroid function, markers of ovarian reserve, and natural fertility. Reproductive Toxicology, 2017, 69, 53-59.	2.9	53
34	Reconstructing the Composition of Per- and Polyfluoroalkyl Substances in Contemporary Aqueous Film-Forming Foams. Environmental Science and Technology Letters, 2021, 8, 59-65.	8.7	50
35	Hepatic Mitochondrial Alteration in CD-1 Mice Associated with Prenatal Exposures to Low Doses of Perfluorooctanoic Acid (PFOA). Toxicologic Pathology, 2015, 43, 546-557.	1.8	48
36	Effects of prenatal exposure to a low dose atrazine metabolite mixture on pubertal timing and prostate development of male Long-Evans rats. Reproductive Toxicology, 2010, 30, 540-549.	2.9	43

#	Article	IF	CITATIONS
37	Improving the risk assessment of lipophilic persistent environmental chemicals in breast milk. Critical Reviews in Toxicology, 2014, 44, 600-617.	3.9	42
38	Screening for Chemical Contributions to Breast Cancer Risk: A Case Study for Chemical Safety Evaluation. Environmental Health Perspectives, 2015, 123, 1255-1264.	6.0	42
39	Animal models of endocrine disruption. Best Practice and Research in Clinical Endocrinology and Metabolism, 2018, 32, 283-297.	4.7	40
40	Histopathologic changes in the uterus, cervix and vagina of immature CD-1 mice exposed to low doses of perfluorooctanoic acid (PFOA) in a uterotrophic assay. Reproductive Toxicology, 2012, 33, 506-512.	2.9	38
41	Polybrominated Diphenyl Ethers in Human Milk and Serum from the U.S. EPA MAMA Study: Modeled Predictions of Infant Exposure and Considerations for Risk Assessment. Environmental Health Perspectives, 2017, 125, 706-713.	6.0	38
42	Timing of Environmental Exposures as a Critical Element in Breast Cancer Risk. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 3245-3250.	3.6	35
43	An assessment of serumâ€dependent impacts on intracellular accumulation and genomic response of per―and polyfluoroalkyl substances in a placental trophoblast model. Environmental Toxicology, 2020, 35, 1395-1405.	4.0	35
44	Tetrabromobisphenol-A Promotes Early Adipogenesis and Lipogenesis in 3T3-L1 Cells. Toxicological Sciences, 2018, 166, 332-344.	3.1	34
45	Current Breast Milk PFAS Levels in the United States and Canada: After All This Time, Why Don't We Know More?. Environmental Health Perspectives, 2022, 130, 25002.	6.0	31
46	Gestational Exposure to Nonylphenol Causes Precocious Mammary Gland Development in Female Rat Offspring. Journal of Reproduction and Development, 2007, 53, 333-344.	1.4	29
47	Application of Sholl analysis to quantify changes in growth and development in rat mammary gland whole mounts. Reproductive Toxicology, 2015, 54, 129-135.	2.9	28
48	A Combined Morphometric and Statistical Approach to Assess Nonmonotonicity in the Developing Mammary Gland of Rats in the CLARITY-BPA Study. Environmental Health Perspectives, 2020, 128, 57001.	6.0	26
49	Analysis of PFOA in dosed CD1 mice: Part 1. Methods development for the analysis of tissues and fluids from pregnant and lactating mice and their pups. Reproductive Toxicology, 2009, 27, 360-364.	2.9	24
50	Mammary Gland Evaluation in Juvenile Toxicity Studies. Toxicologic Pathology, 2016, 44, 1034-1058.	1.8	24
51	Estimating Environmental Hazard and Risks from Exposure to Per―and Polyfluoroalkyl Substances (PFASs): Outcome of a SETAC Focused Topic Meeting. Environmental Toxicology and Chemistry, 2021, 40, 543-549.	4.3	23
52	Yale School of Public Health Symposium: An overview of the challenges and opportunities associated with per- and polyfluoroalkyl substances (PFAS). Science of the Total Environment, 2021, 778, 146192.	8.0	22
53	Gestational exposure to perfluorooctanoic acid (PFOA): Alterations in motor related behaviors. NeuroToxicology, 2017, 58, 110-119.	3.0	20
54	Environmental Factors Involved in Maternal Morbidity and Mortality. Journal of Women's Health, 2021, 30, 245-252.	3.3	20

#	Article	IF	CITATIONS
55	Mammary Cland. , 2013, , 2665-2694.		19
56	Sex-specific behavioral effects following developmental exposure to tetrabromobisphenol A (TBBPA) in Wistar rats. NeuroToxicology, 2019, 75, 136-147.	3.0	19
57	Latent, sex-specific metabolic health effects in CD-1 mouse offspring exposed to PFOA or HFPO-DA (GenX) during gestation. Emerging Contaminants, 2021, 7, 219-235.	4.9	19
58	Preparation of High-quality Hematoxylin and Eosin–stained Sections from Rodent Mammary Gland Whole Mounts for Histopathologic Review. Toxicologic Pathology, 2016, 44, 1059-1064.	1.8	18
59	Inflammatory Biomarkers and Breast Cancer Risk: A Systematic Review of the Evidence and Future Potential for Intervention Research. International Journal of Environmental Research and Public Health, 2020, 17, 5445.	2.6	18
60	Assays for Endogenous Components of Human Milk. Journal of Human Lactation, 2007, 23, 144-156.	1.6	16
61	The Mammary Cland: A Tissue Sensitiveto Environmental Exposures. Reviews on Environmental Health, 2009, 24, 319-25.	2.4	16
62	Quantifying Branching Density in Rat Mammary Gland Whole-mounts Using the Sholl Analysis Method. Journal of Visualized Experiments, 2017, , .	0.3	16
63	Reproducibility of adipogenic responses to metabolism disrupting chemicals in the 3T3-L1 pre-adipocyte model system: An interlaboratory study. Toxicology, 2021, 461, 152900.	4.2	14
64	Invited Perspective: PFAS and Liver Disease: Bringing All the Evidence Together. Environmental Health Perspectives, 2022, 130, 41303.	6.0	11
65	Sectioning Mammary Gland Whole Mounts for Lesion Identification. Journal of Visualized Experiments, 2017, , .	0.3	10
66	A High-Throughput Toxicity Screen of 42 Per- and Polyfluoroalkyl Substances (PFAS) and Functional Assessment of Migration and Gene Expression in Human Placental Trophoblast Cells. Frontiers in Toxicology, 2022, 4, 881347.	3.1	9
67	Select Per- and Polyfluoroalkyl Substances (PFAS) Induce Resistance to Carboplatin in Ovarian Cancer Cell Lines. International Journal of Molecular Sciences, 2022, 23, 5176.	4.1	8
68	Differences in the Rate of in Situ Mammary Gland Development and Other Developmental Endpoints in Three Strains of Female Rat Commonly Used in Mammary Carcinogenesis Studies. Toxicologic Pathology, 2016, 44, 1021-1033.	1.8	7
69	Best practices to quantify the impact of reproductive toxicants on development, function, and diseases of the rodent mammary gland. Reproductive Toxicology, 2022, 112, 51-67.	2.9	7
70	Environmental Chemicals in Breast Milk. , 2019, , 392-407.		6
71	Developmental Exposure to Tetrabromobisphenol A Has Minimal Impact on Male Rat Reproductive Health. Reproductive Toxicology, 2020, 95, 59-65.	2.9	4
72	A special issue dedicated to a complex tissue. Reproductive Toxicology, 2015, 54, 1-5.	2.9	3

#	Article	IF	CITATIONS
73	Effective coordination, collaboration, communication, and partnering are needed to close the gaps for occupational PFAS exposure. American Journal of Industrial Medicine, 2023, 66, 351-352.	2.1	3
74	Estimating risk of neurotoxicity from early life exposure: Human milk is an appropriate matrix, but messages should not discourage breastfeeding. Science of the Total Environment, 2019, 693, 133665.	8.0	2
75	Effects of PFOA on Endocrine-Related Systems. Molecular and Integrative Toxicology, 2015, , 249-264.	0.5	2
76	The Mammary Gland. , 2018, , 547-563.		1
77	Developmental Exposure to Environmental Endocrine Disruptors and Adverse Effects on Mammary Gland Development. , 2012, , 201-224.		1
78	Risk factors as biomarkers of susceptibility in breast cancer. , 2014, , 743-758.		0
79	The Mammary Gland: An Overview. , 2018, , 771-778.		Ο
80	CHDS: A national treasure that keeps on giving. Reproductive Toxicology, 2020, 92, 11-13.	2.9	0
81	Looking for Proof in the Wrong Generation?. Cancer Epidemiology Biomarkers and Prevention, 2021, 30, 1459-1461.	2.5	0