
Christie L Burton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6680940/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vulnerability pathways to mental health outcomes in children and parents during COVID-19. Current Psychology, 2023, 42, 17348-17358.	2.8	11
2	Mostly worse, occasionally better: impact of COVID-19 pandemic on the mental health of Canadian children and adolescents. European Child and Adolescent Psychiatry, 2022, 31, 671-684.	4.7	255
3	Genome-wide association study of pediatric obsessive-compulsive traits: shared genetic risk between traits and disorder. Translational Psychiatry, 2021, 11, 91.	4.8	23
4	Characterization of mice bearing humanized androgen receptor genes (h/mAr) varying in polymorphism length. NeuroImage, 2021, 226, 117594.	4.2	0
5	Insights into attention-deficit/hyperactivity disorder from recent genetic studies. Psychological Medicine, 2021, 51, 2274-2286.	4.5	18
6	Genetics of obsessive-compulsive disorder. Psychological Medicine, 2021, 51, 2247-2259.	4.5	41
7	Examining Sex-Differentiated Genetic Effects Across Neuropsychiatric and Behavioral Traits. Biological Psychiatry, 2021, 89, 1127-1137.	1.3	48
8	Obsessiveâ€compulsive disorder in children and youth: neurocognitive function in clinic and community samples. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2021, , .	5.2	7
9	Clinical validation of the parentâ€report Toronto Obsessive–Compulsive Scale (TOCS): A pediatric openâ€source rating scale. JCPP Advances, 2021, 1, e12056.	2.4	4
10	Investigating executive functions in youth with OCD and hoarding symptoms. Bulletin of the Menninger Clinic, 2021, 85, 335-357.	0.6	0
11	Screen Use and Mental Health Symptoms in Canadian Children and Youth During the COVID-19 Pandemic. JAMA Network Open, 2021, 4, e2140875.	5.9	52
12	Serotonin system gene variants and regional brain volume differences in pediatric OCD. Brain Imaging and Behavior, 2020, 14, 1612-1625.	2.1	7
13	Examination of the shared genetic basis of anorexia nervosa and obsessive–compulsive disorder. Molecular Psychiatry, 2020, 25, 2036-2046.	7.9	83
14	Genetics of obsessive-compulsive disorder and Tourette disorder. , 2020, , 239-252.		1
15	Obsessive-compulsive disorder and attention-deficit/hyperactivity disorder: distinct associations with DNA methylation and genetic variation. Journal of Neurodevelopmental Disorders, 2020, 12, 23.	3.1	27
16	Serotonin system genes and hoarding with and without other obsessive–compulsive traits in a populationâ€based, pediatric sample: A genetic association study. Depression and Anxiety, 2020, 37, 760-770.	4.1	11
17	Shared genetic etiology between obsessive-compulsive disorder, obsessive-compulsive symptoms in the population, and insulin signaling. Translational Psychiatry, 2020, 10, 121.	4.8	21
18	Polygenic Risk and Neural Substrates of Attention-Deficit/Hyperactivity Disorder Symptoms in Youths With a History of Mild Traumatic Brain Injury. Biological Psychiatry, 2019, 85, 408-416.	1.3	27

CHRISTIE L BURTON

#	Article	IF	CITATIONS
19	Serotonin system genes and obsessiveâ€compulsive trait dimensions in a populationâ€based, pediatric sample: a genetic association study. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2019, 60, 1289-1299.	5.2	10
20	A large data resource of genomic copy number variation across neurodevelopmental disorders. Npj Genomic Medicine, 2019, 4, 26.	3.8	118
21	<scp>SWAN</scp> scale for <scp>ADHD</scp> traitâ€based genetic research: a validity and polygenic risk study. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2019, 60, 988-997.	5.2	41
22	Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders. Cell, 2019, 179, 1469-1482.e11.	28.9	935
23	Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nature Genetics, 2019, 51, 63-75.	21.4	1,594
24	Response Time Adjustment in the Stop Signal Task: Development in Children and Adolescents. Child Development, 2019, 90, e263-e272.	3.0	21
25	Revealing the complex genetic architecture of obsessive–compulsive disorder using meta-analysis. Molecular Psychiatry, 2018, 23, 1181-1188.	7.9	400
26	Heritability of obsessive–compulsive trait dimensions in youth from the general population. Translational Psychiatry, 2018, 8, 191.	4.8	32
27	Analysis of shared heritability in common disorders of the brain. Science, 2018, 360, .	12.6	1,085
28	A review of the role of serotonin system genes in obsessive-compulsive disorder. Neuroscience and Biobehavioral Reviews, 2017, 80, 372-381.	6.1	79
29	Clutamate Genetics in Obsessive-Compulsive Disorder: A Review. Journal of the Canadian Academy of Child and Adolescent Psychiatry, 2017, 26, 205-213.	0.6	20
30	Uncovering obsessive-compulsive disorder risk genes in a pediatric cohort by high-resolution analysis of copy number variation. Journal of Neurodevelopmental Disorders, 2016, 8, 36.	3.1	55
31	The Toronto Obsessive-Compulsive Scale: Psychometrics of a Dimensional Measure of Obsessive-Compulsive Traits. Journal of the American Academy of Child and Adolescent Psychiatry, 2016, 55, 310-318.e4.	0.5	47
32	Clinical Correlates of Hoarding With and Without Comorbid Obsessive-Compulsive Symptoms in a Community Pediatric Sample. Journal of the American Academy of Child and Adolescent Psychiatry, 2016, 55, 114-121.e2.	0.5	28
33	Three Reasons why Studying Hoarding in Children and Adolescents is Important. Journal of the Canadian Academy of Child and Adolescent Psychiatry, 2015, 24, 128-30.	0.6	12
34	Antagonizing 5-HT2A receptors with M100907 and stimulating 5-HT2C receptors with Ro60-0175 blocks cocaine-induced locomotion and zif268 mRNA expression in Sprague-Dawley rats. Behavioural Brain Research, 2013, 240, 171-181.	2.2	20
35	Early postnatal experience and DRD2 genotype affect dopamine receptor expression in the rat ventral striatum. Behavioural Brain Research, 2013, 237, 278-282.	2.2	29
36	Age and sex differences in impulsive action in rats: The role of dopamine and glutamate. Behavioural Brain Research, 2012, 230, 21-33.	2.2	68

CHRISTIE L BURTON

#	Article	IF	CITATIONS
37	Accumbal dopamine function in postpartum rats that were raised without their mothers. Hormones and Behavior, 2011, 60, 632-643.	2.1	49
38	Enhanced Incentive Motivation for Sucrose-Paired Cues in Adolescent Rats: Possible Roles for Dopamine and Opioid Systems. Neuropsychopharmacology, 2011, 36, 1631-1643.	5.4	22
39	Early adversity and serotonin transporter genotype interact with hippocampal glucocorticoid receptor mRNA expression, corticosterone, and behavior in adult male rats Behavioral Neuroscience, 2011, 125, 150-160.	1.2	58
40	The effects of adolescent methylphenidate self-administration on responding for a conditioned reward, amphetamine-induced locomotor activity, and neuronal activation. Psychopharmacology, 2010, 208, 455-468.	3.1	19
41	Gestational treatment with methylazoxymethanol (MAM) that disrupts hippocampal-dependent memory does not alter behavioural response to cocaine. Pharmacology Biochemistry and Behavior, 2009, 93, 382-390.	2.9	13
42	Characterization of methylphenidate self-administration and reinstatement in the rat. Psychopharmacology, 2008, 199, 55-66.	3.1	39
43	Prenatal restraint stress and motherless rearing disrupts expression of plasticity markers and stress-induced corticosterone release in adult female Sprague–Dawley rats. Brain Research, 2007, 1158, 28-38.	2.2	90
44	Early adversity alters attention and locomotion in adult Sprague-Dawley rats Behavioral Neuroscience, 2006, 120, 665-675.	1.2	57