
David Eckmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6680568/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanogel carrier design for targeted drug delivery. Journal of Materials Chemistry B, 2014, 2, 8085-8097.	5.8	153
2	Computational model for nanocarrier binding to endothelium validated using in vivo, in vitro, and atomic force microscopy experiments. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16530-16535.	7.1	116
3	Cell elasticity with altered cytoskeletal architectures across multiple cell types. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 61, 197-207.	3.1	108
4	Correlating macrophage morphology and cytokine production resulting from biomaterial contact. Journal of Biomedical Materials Research - Part A, 2013, 101A, 203-212.	4.0	98
5	Theoretical and experimental intravascular gas embolism absorption dynamics. Journal of Applied Physiology, 1999, 87, 1287-1295.	2.5	88
6	Polidocanol for endovenous microfoam sclerosant therapy. Expert Opinion on Investigational Drugs, 2009, 18, 1919-1927.	4.1	75
7	Optimizing endothelial targeting by modulating the antibody density and particle concentration of anti-ICAM coated carriers. Journal of Controlled Release, 2011, 150, 37-44.	9.9	73
8	Flexible Nanoparticles Reach Sterically Obscured Endothelial Targets Inaccessible to Rigid Nanoparticles. Advanced Materials, 2018, 30, e1802373.	21.0	73
9	The effect of CD47 modified polymer surfaces on inflammatory cell attachment and activation. Biomaterials, 2011, 32, 4317-4326.	11.4	71
10	ICAM-1 Targeted Nanogels Loaded with Dexamethasone Alleviate Pulmonary Inflammation. PLoS ONE, 2014, 9, e102329.	2.5	68
11	Accelerated Arteriolar Gas Embolism Reabsorption by an Exogenous Surfactant. Anesthesiology, 2002, 96, 971-979.	2.5	65
12	Targeted Release of Tobramycin from a pH-Responsive Grafted Bilayer Challenged with <i>S. aureus</i> . Biomacromolecules, 2015, 16, 650-659.	5.4	65
13	Non-affinity factors modulating vascular targeting of nano- and microcarriers. Advanced Drug Delivery Reviews, 2016, 99, 97-112.	13.7	65
14	Nanoparticle Brownian motion and hydrodynamic interactions in the presence of flow fields. Physics of Fluids, 2011, 23, 73602-7360215.	4.0	60
15	Designing nanogel carriers for antibacterial applications. Acta Biomaterialia, 2014, 10, 2105-2111.	8.3	60
16	Flow dynamics, binding and detachment of spherical carriers targeted to ICAM-1 on endothelial cells. Biorheology, 2009, 46, 323-341.	0.4	59
17	Symmetric pH-Dependent Swelling and Antibacterial Properties of Chitosan Brushes. Langmuir, 2011, 27, 12458-12465.	3.5	59
18	Reversible swelling of chitosan and quaternary ammonium modified chitosan brush layers: effects of pH and counter anion size and functionality. Journal of Materials Chemistry, 2012, 22, 19605.	6.7	58

David Eckmann

#	Article	IF	CITATIONS
19	Numerical study of wall effects on buoyant gas-bubble rise in a liquid-filled finite cylinder. Physical Review E, 2007, 76, 036308.	2.1	57
20	Cerebral gas embolism absorption during hyperbaric therapy: theory. Journal of Applied Physiology, 2001, 90, 593-600.	2.5	55
21	Microvascular gas embolization clearance following perfluorocarbon administration. Journal of Applied Physiology, 2003, 94, 860-868.	2.5	53
22	Deleterious variants in TRAK1 disrupt mitochondrial movement and cause fatal encephalopathy. Brain, 2017, 140, 568-581.	7.6	53
23	Surfactant Reduction in Embolism Bubble Adhesion and Endothelial Damage. Anesthesiology, 2004, 101, 97-103.	2.5	50
24	Multi-scale Modeling of the Cardiovascular System: Disease Development, Progression, and Clinical Intervention. Annals of Biomedical Engineering, 2016, 44, 2642-2660.	2.5	50
25	Multiscale Modeling in the Clinic: Drug Design and Development. Annals of Biomedical Engineering, 2016, 44, 2591-2610.	2.5	50
26	Microvascular Embolization Following Polidocanol Microfoam Sclerosant Administration. Dermatologic Surgery, 2005, 31, 636-643.	0.8	49
27	Flow shear stress differentially regulates endothelial uptake of nanocarriers targeted to distinct epitopes of PECAM-1. Journal of Controlled Release, 2015, 210, 39-47.	9.9	49
28	Gold Nanorod Linking to Control Plasmonic Properties in Solution and Polymer Nanocomposites. Langmuir, 2014, 30, 1906-1914.	3.5	47
29	Embolism Bubble Adhesion Force in Excised Perfused Microvessels. Anesthesiology, 2003, 99, 400-408.	2.5	46
30	Surfactants Reduce Platelet–Bubble and Platelet–Platelet Binding Induced by In Vitro Air Embolism. Anesthesiology, 2005, 103, 1204-1210.	2.5	44
31	Intracellular nanoparticle dynamics affected by cytoskeletal integrity. Soft Matter, 2017, 13, 1873-1880.	2.7	44
32	Surfactants Attenuate Gas Embolism-induced Thrombin Production. Anesthesiology, 2004, 100, 77-84.	2.5	41
33	Multivalent Binding of Nanocarrier to Endothelial Cells under Shear Flow. Biophysical Journal, 2011, 101, 319-326.	0.5	41
34	Bubble Motion in a Blood Vessel: Shear Stress Induced Endothelial Cell Injury. Journal of Biomechanical Engineering, 2009, 131, 074516.	1.3	39
35	Air bubble contact with endothelial cells in vitro induces calcium influx and IP3-dependent release of calcium stores. American Journal of Physiology - Cell Physiology, 2011, 301, C679-C686.	4.6	39
36	Competitive protein adsorption on polysaccharide and hyaluronate modified surfaces. Biofouling, 2011, 27, 505-518.	2.2	39

#	Article	IF	CITATIONS
37	Measurement of Mitochondrial Respiration and Motility in Acute Care. Journal of Intensive Care Medicine, 2017, 32, 86-94.	2.8	38
38	Wetting Characteristics of Aqueous Surfactant-Laden Drops. Journal of Colloid and Interface Science, 2001, 242, 386-394.	9.4	37
39	Bubble rising in an inclined channel. Physics of Fluids, 2002, 14, 93-106.	4.0	36
40	Dextran Functionalized Surfaces via Reductive Amination:Â Morphology, Wetting, and Adhesion. Biomacromolecules, 2006, 7, 557-564.	5.4	35
41	Interfacial dynamics of stationary gas bubbles in flows in inclined tubes. Journal of Fluid Mechanics, 1999, 398, 225-244.	3.4	33
42	Influence of Endothelial Glycocalyx Degradation and Surfactants on Air Embolism Adhesion. Anesthesiology, 2006, 105, 1220-1227.	2.5	32
43	Protein Assembly at the Air–Water Interface Studied by Fluorescence Microscopy. Langmuir, 2011, 27, 12775-12781.	3.5	32
44	Mechanotransductional basis of endothelial cell response to intravascular bubbles. Integrative Biology (United Kingdom), 2011, 3, 1033.	1.3	31
45	High throughput modular chambers for rapid evaluation of anesthetic sensitivity. BMC Anesthesiology, 2006, 6, 13.	1.8	30
46	Creating Biomimetic Polymeric Surfaces by Photochemical Attachment and Patterning of Dextran. Langmuir, 2010, 26, 14126-14134.	3.5	30
47	Multiscale Modeling of Functionalized Nanocarriers in Targeted Drug Delivery. Current Nanoscience, 2011, 7, 727-735.	1.2	29
48	Air Bubble Contact with Endothelial Cells Causes a Calcium-Independent Loss in Mitochondrial Membrane Potential. PLoS ONE, 2012, 7, e47254.	2.5	29
49	Hemocompatibility and biocompatibility of antibacterial biomimetic hybrid films. Toxicology and Applied Pharmacology, 2013, 272, 703-712.	2.8	29
50	Automated detection of wholeâ€cell mitochondrial motility and its dependence on cytoarchitectural integrity. Biotechnology and Bioengineering, 2015, 112, 1395-1405.	3.3	29
51	Photo-activated porphyrin in combination with antibiotics: Therapies against Staphylococci. Journal of Photochemistry and Photobiology B: Biology, 2013, 129, 27-35.	3.8	28
52	Microvascular Embolization Following Polidocanol Microfoam Sclerosant Administration. Dermatologic Surgery, 2005, 31, 636-643.	0.8	27
53	Dynamic Factors Controlling Targeting Nanocarriers to Vascular Endothelium. Current Drug Metabolism, 2012, 13, 70-81.	1.2	27
54	Alterations in Mitochondrial Function in Blood Cells Obtained From Patients With Sepsis Presenting to an Emergency Department. Shock, 2019, 51, 580-584.	2.1	27

#	Article	IF	CITATIONS
55	Model Predictions of Gas Embolism Growth and Reabsorption during Xenon Anesthesia. Anesthesiology, 2003, 99, 638-645.	2.5	26
56	Dose- and Time-Dependent Liquid Sclerosant Effects on Endothelial Cell Death. Dermatologic Surgery, 2006, 32, 1444-1452.	0.8	26
57	Nanocarrier Hydrodynamics and Binding in Targeted Drug Delivery: Challenges in Numerical Modeling and Experimental Validation. Journal of Nanotechnology in Engineering and Medicine, 2013, 4, 101011-1010115.	0.8	26
58	Biophysically inspired model for functionalized nanocarrier adhesion to cell surface: roles of protein expression and mechanical factors. Royal Society Open Science, 2016, 3, 160260.	2.4	26
59	Human macrophage adhesion on polysaccharide patterned surfaces. Soft Matter, 2011, 7, 3599.	2.7	25
60	Composite generalized Langevin equation for Brownian motion in different hydrodynamic and adhesion regimes. Physical Review E, 2015, 91, 052303.	2.1	25
61	Nanomechanics of pH-Responsive, Drug-Loaded, Bilayered Polymer Grafts. ACS Applied Materials & Interfaces, 2017, 9, 12936-12948.	8.0	25
62	Alterations in mitochondrial respiration and reactive oxygen species in patients poisoned with carbon monoxide treated with hyperbaric oxygen. Intensive Care Medicine Experimental, 2018, 6, 4.	1.9	24
63	Cross-linker-Modulated Nanogel Flexibility Correlates with Tunable Targeting to a Sterically Impeded Endothelial Marker. ACS Nano, 2019, 13, 11409-11421.	14.6	24
64	Antibacterial biomimetic hybrid films. Soft Matter, 2012, 8, 2423.	2.7	23
65	A preliminary study in the alterations of mitochondrial respiration in patients with carbon monoxide poisoning measured in blood cells. Clinical Toxicology, 2017, 55, 579-584.	1.9	23
66	Effect of a soluble surfactant on a finite-sized bubble motion in a blood vessel. Journal of Fluid Mechanics, 2010, 642, 509-539.	3.4	22
67	Collaborative Enhancement of Endothelial Targeting of Nanocarriers by Modulating Platelet-Endothelial Cell Adhesion Molecule-1/CD31 Epitope Engagement. ACS Nano, 2015, 9, 6785-6793.	14.6	22
68	In vitro surfactant mitigation of gas bubble contact-induced endothelial cell death. Undersea and Hyperbaric Medicine, 2011, 38, 27-39.	0.3	22
69	The effects of a soluble surfactant on the interfacial dynamics of stationary bubbles in inclined tubes. Journal of Fluid Mechanics, 2002, 469, 369-400.	3.4	21
70	Human plasma protein adsorption onto dextranized surfaces: A two-dimensional electrophoresis and mass spectrometry study. Colloids and Surfaces B: Biointerfaces, 2011, 84, 241-252.	5.0	20
71	Strain-Rate Dependence of Elastic Modulus Reveals Silver Nanoparticle Induced Cytotoxicity. Nanobiomedicine, 2015, 2, 9.	5.7	20
72	Generalized Langevin dynamics of a nanoparticle using a finite element approach: Thermostating with correlated noise. Journal of Chemical Physics, 2011, 135, 114104.	3.0	19

#	Article	IF	CITATIONS
73	Dynamic factors controlling carrier anchoring on vascular cells. IUBMB Life, 2011, 63, 640-647.	3.4	19
74	Finite-sized gas bubble motion in a blood vessel: Non-Newtonian effects. Physical Review E, 2008, 78, 036303.	2.1	18
75	A facile route to synthesize nanogels doped with silver nanoparticles. Journal of Nanoparticle Research, 2013, 15, 1323.	1.9	18
76	Mitochondrial respiration is sensitive to cytoarchitectural breakdown. Integrative Biology (United) Tj ETQq0 0 () rgBT /Ove 1.3	erlock 10 Tf 50 17
77	Nanoparticle stochastic motion in the inertial regime and hydrodynamic interactions close to a cylindrical wall. Physical Review Fluids, 2016, 1, .	2.5	17
78	Hemocompatibility of chitosan/poly(acrylic acid) grafted polyurethane tubing. Journal of Materials Chemistry B, 2013, 1, 6382.	5.8	16
79	Competitive Adsorption of Polyelectrolytes onto and into Pellicle-Coated Hydroxyapatite Investigated by QCM-D and Force Spectroscopy. ACS Applied Materials & Interfaces, 2017, 9, 13079-13091.	8.0	16
80	Mitochondrial networking in human blood cells with application in acute care illnesses. Mitochondrion, 2019, 44, 27-34.	3.4	16
81	Bubble detachment by diffusion-controlled surfactant adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 227, 21-33.	4.7	15
82	Gas Embolism and Surfactant-Based Intervention: Implications for Long-Duration Space-Based Activity. Annals of the New York Academy of Sciences, 2006, 1077, 256-269.	3.8	15
83	Imaging Macromolecular Interactions at an Interface. Langmuir, 2010, 26, 2452-2459.	3.5	15
84	Cellular Uptake and Intracellular Cargo Release From Dextran Based Nanogel Drug Carriers. Journal of Nanotechnology in Engineering and Medicine, 2013, 4, 110021-110028.	0.8	15
85	Excess area dependent scaling behavior of nano-sized membrane tethers. Physical Biology, 2018, 15, 026002.	1.8	15
86	Stiffness can mediate balance between hydrodynamic forces and avidity to impact the targeting of flexible polymeric nanoparticles in flow. Nanoscale, 2019, 11, 6916-6928.	5.6	15
87	A quantitative and selective chromatography method for determining coverages of multiple proteins on surfaces. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2005, 826, 198-205.	2.3	14
88	Chemically grafted fibronectin for use in QCM-D cell studies. Biosensors and Bioelectronics, 2014, 58, 249-257.	10.1	14
89	Microstructure of Flow-Driven Suspension of Hardspheres in Cylindrical Confinement: A Dynamical Density Functional Theory and Monte Carlo Study. Langmuir, 2017, 33, 11332-11344.	3.5	14
90	Bubble Motion through a Generalized Power‣aw Fluid Flowing in a Vertical Tube. Annals of the New York Academy of Sciences, 2009, 1161, 256-267.	3.8	13

#	Article	IF	CITATIONS
91	Temporal multiscale approach for nanocarrier motion with simultaneous adhesion and hydrodynamic interactions in targeted drug delivery. Journal of Computational Physics, 2013, 244, 252-263.	3.8	13
92	Hydrodynamic interactions of deformable polymeric nanocarriers and the effect of crosslinking. Soft Matter, 2015, 11, 5955-5969.	2.7	13
93	Mitochondrial dynamics and respiration within cells with increased open pore cytoskeletal meshes. Biology Open, 2017, 6, 1831-1839.	1.2	13
94	Motion of a nano-spheroid in a cylindrical vessel flow: Brownian and hydrodynamic interactions. Journal of Fluid Mechanics, 2017, 821, 117-152.	3.4	12
95	Rheology of colloidal suspensions in confined flow: Treatment of hydrodynamic interactions in particle-based simulations inspired by dynamical density functional theory. Physical Review E, 2018, 98, .	2.1	12
96	Ex vivo use of cell-permeable succinate prodrug attenuates mitochondrial dysfunction in blood cells obtained from carbon monoxide-poisoned individuals. American Journal of Physiology - Cell Physiology, 2020, 319, C129-C135.	4.6	12
97	In vitro comparison of hydroxocobalamin (B12a) and the mitochondrial directed therapy by a succinate prodrug in a cellular model of cyanide poisoning. Toxicology Reports, 2020, 7, 1263-1271.	3.3	11
98	A hybrid formalism combining fluctuating hydrodynamics and generalized Langevin dynamics for the simulation of nanoparticle thermal motion in an incompressible fluid medium. Molecular Physics, 2012, 110, 1057-1067.	1.7	10
99	Computational Models for Nanoscale Fluid Dynamics and Transport Inspired by Nonequilibrium Thermodynamics1. Journal of Heat Transfer, 2017, 139, 0330011-330019.	2.1	10
100	Surfactant Properties Differentially Influence Intravascular Gas Embolism Mechanics. Annals of Biomedical Engineering, 2010, 38, 3649-3663.	2.5	9
101	Hyaluronan and dextran modified tubes resist cellular activation with blood contact. Colloids and Surfaces B: Biointerfaces, 2013, 108, 44-51.	5.0	9
102	Multiscale modeling of protein membrane interactions for nanoparticle targeting in drug delivery. Current Opinion in Structural Biology, 2020, 64, 104-110.	5.7	9
103	Perfluorocarbon Induced Alterations in Pulmonary Mechanics. Artificial Cells, Blood Substitutes, and Biotechnology, 1998, 26, 259-271.	0.9	8
104	Nanoparticle transport phenomena in confined flows. Advances in Heat Transfer, 2019, 51, 55-129.	0.9	8
105	Variations in epidural catheter manufacture: Implications for bending and stiffness. Regional Anesthesia and Pain Medicine, 2003, 28, 37-42.	2.3	7
106	Surfactant reduction of cerebral infarct size and behavioral deficit in a rat model of cerebrovascular arterial gas embolism. Journal of Applied Physiology, 2013, 115, 868-876.	2.5	7
107	Mitochondrial DNA 3243A>G heteroplasmy is associated with changes in cytoskeletal protein expression and cell mechanics. Journal of the Royal Society Interface, 2017, 14, 20170071.	3.4	7
108	Pefluorocarbon inhibition of bubble induced Ca ²⁺ transients in an <i>inÂvitro</i> model of vascular gas embolism. Experimental Biology and Medicine, 2014, 239, 116-122.	2.4	6

#	Article	IF	CITATIONS
109	Fluorescence Microscopy Imaging Calibration for Quantifying Nanocarrier Binding to Cells During Shear Flow Exposure. Journal of Biomedical Nanotechnology, 2017, 13, 737-745.	1.1	6
110	Translational Application of Measuring Mitochondrial Functions in Blood Cells Obtained from Patients with Acute Poisoning. Journal of Medical Toxicology, 2018, 14, 144-151.	1.5	6
111	Acute decompression following simulated dive conditions alters mitochondrial respiration and motility. American Journal of Physiology - Cell Physiology, 2018, 315, C699-C705.	4.6	6
112	Prophylaxis of mitochondrial dysfunction caused by cellular decompression from hyperbaric exposure. Mitochondrion, 2020, 52, 8-19.	3.4	6
113	Dextran Grafted Silicon Substrates: Preparation, Characterization And Biomedical Applications. Materials Research Society Symposia Proceedings, 2003, 774, 7251.	0.1	6
114	A guest molecule–host cavity fitting algorithm to mine PDB for small molecule targets. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2006, 1764, 1320-1324.	2.3	5
115	Effect of wall-mediated hydrodynamic fluctuations on the kinetics of a Brownian nanoparticle. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472, 20160397.	2.1	5
116	Nanofluid Dynamics of Flexible Polymeric Nanoparticles Under Wall Confinement. Journal of Heat Transfer, 2019, 141, 0524011-524016.	2.1	5
117	Influence of Intravenous Perfluorocarbon Administration on the Dynamic Behavior of Lung Surfactant. Artificial Cells, Blood Substitutes, and Biotechnology, 1998, 26, 359-366.	0.9	4
118	Biomimetic Dextran Coatings On Silicon Wafers: Thin Film Properties And Wetting. Materials Research Society Symposia Proceedings, 2002, 734, 1071.	0.1	4
119	Regarding "Stroke after varicose vein foam injection sclerotherapy― Journal of Vascular Surgery, 2006, 44, 225.	1.1	4
120	Numerical Modeling of the Transport to an Intravascular Bubble in a Tube with a Soluble/Insoluble Surfactant. Annals of the New York Academy of Sciences, 2006, 1077, 270-287.	3.8	4
121	Dose response of surfactants to attenuate gas embolism related platelet aggregation. Heat and Mass Transfer, 2014, 50, 323-331.	2.1	4
122	Bolus Contaminant Dispersion in Oscillating Flow in Curved Tubes. Journal of Biomechanical Engineering, 1998, 120, 238-244.	1.3	3
123	Nanocarrier–Cell Surface Adhesive and Hydrodynamic Interactions: Ligand–Receptor Bond Sensitivity Study. Journal of Nanotechnology in Engineering and Medicine, 2012, 3, 310101-310108.	0.8	3
124	Top-down Mesoscale Models and Free Energy Calculations of Multivalent Protein-Protein and Protein-Membrane Interactions in Nanocarrier Adhesion and Receptor Trafficking. RSC Biomolecular Sciences, 2012, , 272-292.	0.4	3
125	Fluctuating Hydrodynamics Approach for the Simulation of Nanoparticle Brownian Motion in a Newtonian Fluid. International Journal of Micro-nano Scale Transport, 2012, 3, 13-20.	0.2	3
126	A Hybrid Approach for the Simulation of the Thermal Motion of a Nearly Neutrally Buoyant Nanoparticle in an Incompressible Newtonian Fluid Medium. Journal of Heat Transfer, 2013, 135, .	2.1	3

#	Article	IF	CITATIONS
127	Modelling of binding free energy of targeted nanocarriers to cell surface. Heat and Mass Transfer, 2014, 50, 315-321.	2.1	3
128	Compartmentalization of Bioenergetic Substrate Delivery in Intact Cells. Journal of Heat Transfer, 2019, 141, .	2.1	3
129	Hyperbaric oxygen alters intracellular bioenergetics distribution in human dermal fibroblasts. Life Sciences, 2021, 278, 119616.	4.3	3
130	Effect of Glycocalyx on Drug Delivery Carriers Targeted to Endothelial Cells. International Journal of Transport Phenomena, 2011, 12, 63-75.	0.0	3
131	Biomimetic Surfaces via Dextran Immobilization: Grafting Density and Surface Properties. Materials Research Society Symposia Proceedings, 2004, 826, 221.	0.1	2
132	Computational Simulation of Hematocrit Effects on Arterial Gas Embolism Dynamics. Aviation, Space, and Environmental Medicine, 2012, 83, 92-101.	0.5	2
133	Cytoskeletal Perturbing Drugs and Their Effect on Cell Elasticity. Conference Proceedings of the Society for Experimental Mechanics, 2017, , 169-177.	0.5	2
134	Hydrodynamics and Interfacial Surfactant Transport in Vascular Gas Embolism. Journal of Heat Transfer, 2021, 143, .	2.1	2
135	Biophysical Considerations in the Rational Design and Cellular Targeting of Flexible Polymeric Nanoparticles. Advanced Materials Interfaces, 2021, 8, 2101290.	3.7	2
136	Modeling of a Nanoparticle Motion in a Newtonian Fluid: A Comparison Between Fluctuating Hydrodynamics and Generalized Langevin Procedures. , 2012, 2012, 735-743.		1
137	Air Bubble Contact with Endothelial Cells Causes a Calcium-Independent Loss in Mitochondrial Membrane Potential. Biophysical Journal, 2013, 104, 215a-216a.	0.5	1
138	Difficulty in Advancing Flexible Epidural Catheters When Establishing Labor Analgesia: An Observational Open-Label Randomized Trial. Anesthesia and Analgesia, 2021, 133, 151-159.	2.2	1
139	Air Bubble Growth in Water. Anesthesiology, 2006, 105, 1059-1059.	2.5	0
140	Understanding the Mechanotransductional Basis of Intravascular Bubble Injury. Biophysical Journal, 2011, 100, 280a.	0.5	0
141	Understanding the Role of Exogenous and Endogenous Surfactants in Gas Embolism. ACS Symposium Series, 2012, , 395-418.	0.5	0
142	Understanding Viscoelasticity Changes in Single Cells using Variable Indentation-Rate Viscoelastic Analysis. Biophysical Journal, 2016, 110, 366a.	0.5	0
143	MANIPULATION OF INTRAVASCULAR GAS EMBOLISM DYNAMICS WITH EXOGENOUS SURFACTANTS. , 2002, , 244-244.		0
144	THE DYNAMIC EFFECTS OF SURFACTANTS ON STATIONARY GAS BUBBLES IN LIQUID FLOWS. , 2002, , 248-248.		0

#	Article	IF	CITATIONS
145	SOLUBLE SURFACTANTS AND CONTACT-ANGLE DYNAMICS. , 2002, , 255-255.		Ο
146	Using 3-D dense packing models to predict surface tension change due to protein adsorption. International Journal of Transport Phenomena, 2011, 12, 283-300.	0.0	0
147	Biophysical Considerations in the Rational Design and Cellular Targeting of Flexible Polymeric Nanoparticles (Adv. Mater. Interfaces 23/2021). Advanced Materials Interfaces, 2021, 8, .	3.7	0