Carolien Kroeze

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6680455/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Smart Nutrient Retention Networks: a novel approach for nutrient conservation through water quality management. Inland Waters, 2022, 12, 138-153.	1.1	9
2	Mitigating phosphorus pollution from detergents in the surface waters of China. Science of the Total Environment, 2022, 804, 150125.	3.9	18
3	What is the pollution limit? Comparing nutrient loads with thresholds to improve water quality in Lake Baiyangdian. Science of the Total Environment, 2022, 807, 150710.	3.9	19
4	Nitrogen losses from food production in the North China Plain: A case study for Quzhou. Science of the Total Environment, 2022, 816, 151557.	3.9	15
5	Multi-pollutant assessment of river pollution from livestock production worldwide. Water Research, 2022, 209, 117906.	5.3	22
6	In-stream surface water quality in China: A spatially-explicit modelling approach for nutrients. Journal of Cleaner Production, 2022, 334, 130208.	4.6	6
7	Accounting for interactions between Sustainable Development Goals is essential for water pollution control in China. Nature Communications, 2022, 13, 730.	5.8	97
8	Characteristics of realigned dikes in coastal Europe: Overview and opportunities for nature-based flood protection. Ocean and Coastal Management, 2022, 222, 106116.	2.0	6
9	Nitrogen budgets for freshwater aquaculture and mariculture in a large tropical island – A case study for Hainan Island 1998–2018. Marine Environmental Research, 2022, 177, 105642.	1.1	10
10	Past and future pesticide losses to Chinese waters under socioeconomic development and climate change. Journal of Environmental Management, 2022, 317, 115361.	3.8	6
11	Evaluation of the potential environmental impacts of condom production in Thailand. Journal of Integrative Environmental Sciences, 2021, 18, 89-114.	1.0	3
12	GREEN AGRICULTURE AND BLUE WATER IN CHINA: REINTEGRATING CROP AND LIVESTOCK PRODUCTION FOR CLEAN WATER. Frontiers of Agricultural Science and Engineering, 2021, 8, 72.	0.9	10
13	Urbanization: an increasing source of multiple pollutants to rivers in the 21st century. Npj Urban Sustainability, 2021, 1, .	3.7	84
14	Impacts of nitrogen pollution on corals in the context of global climate change and potential strategies to conserve coral reefs. Science of the Total Environment, 2021, 774, 145017.	3.9	56
15	Equality in river pollution control in China. Science of the Total Environment, 2021, 777, 146105.	3.9	14
16	Flood risk reduction by parallel flood defences – Case-study of a coastal multifunctional flood protection zone. Coastal Engineering, 2021, 167, 103903.	1.7	12
17	Characterizing 19 thousand Chinese lakes, ponds and reservoirs by morphometric, climate and sediment characteristics. Water Research, 2021, 202, 117427.	5.3	21
18	Modelling rotavirus concentrations in rivers: Assessing Uganda's present and future microbial water quality. Water Research, 2021, 204, 117615.	5.3	6

#	Article	IF	CITATIONS
19	Seasonal River Export of Nitrogen to Guanting and Baiyangdian Lakes in the Hai He Basin. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG005689.	1.3	7
20	Modeling the Contribution of Crops to Nitrogen Pollution in the Yangtze River. Environmental Science & Technology, 2020, 54, 11929-11939.	4.6	26
21	Water, society and pollution in an urbanizing world: recent developments and future challenges. Current Opinion in Environmental Sustainability, 2020, 46, 11-15.	3.1	15
22	The Sensitivity of a Dike-Marsh System to Sea-Level Rise—A Model-Based Exploration. Journal of Marine Science and Engineering, 2020, 8, 42.	1.2	3
23	How natural processes contribute to flood protection - A sustainable adaptation scheme for a wide green dike. Science of the Total Environment, 2020, 739, 139698.	3.9	16
24	Reducing river export of nutrients and eutrophication in Lake Dianchi in the future. Blue-Green Systems, 2020, 2, 73-90.	0.6	10
25	Global Change Can Make Coastal Eutrophication Control in China More Difficult. Earth's Future, 2020, 8, e2019EF001280.	2.4	35
26	Non-CO ₂ greenhouse gases: the underrepresented, complex side of the climate challenge. Journal of Integrative Environmental Sciences, 2020, 17, i-viii.	1.0	2
27	Reply to Comment on "Multi-Scale Modeling of Nutrient Pollution in the Rivers of China― Environmental Science & Technology, 2020, 54, 2046-2047.	4.6	2
28	Comments on the article of "Agriculture Green Development: a model for China and the world". Frontiers of Agricultural Science and Engineering, 2020, 7, 106.	0.9	0
29	Causal relationship in the interaction between land cover change and underlying surface climate in the grassland ecosystems in China. Science of the Total Environment, 2019, 647, 1080-1087.	3.9	18
30	How to avoid coastal eutrophication - a back-casting study for the North China Plain. Science of the Total Environment, 2019, 692, 676-690.	3.9	26
31	Multi-scale Modeling of Nutrient Pollution in the Rivers of China. Environmental Science & Technology, 2019, 53, 9614-9625.	4.6	76
32	Water pollution from food production: lessons for optimistic and optimal solutions. Current Opinion in Environmental Sustainability, 2019, 40, 88-94.	3.1	15
33	Increasing nitrogen export to sea: A scenario analysis for the Indus River. Science of the Total Environment, 2019, 694, 133629.	3.9	18
34	Impact hotspots of reduced nutrient discharge shift across the globe with population and dietary changes. Nature Communications, 2019, 10, 2627.	5.8	40
35	Modelling global river export of microplastics to the marine environment: Sources and future trends. Science of the Total Environment, 2019, 673, 392-401.	3.9	165
36	Editorial overview: Water quality: A new challenge for global scale model development and application. Current Opinion in Environmental Sustainability, 2019, 36, A1-A5.	3.1	18

#	Article	IF	CITATIONS
37	Re-evaluating safety risks of multifunctional dikes with a probabilistic risk framework. Natural Hazards and Earth System Sciences, 2019, 19, 737-756.	1.5	10
38	Seasonality in river export of nitrogen: A modelling approach for the Yangtze River. Science of the Total Environment, 2019, 671, 1282-1292.	3.9	52
39	Scenarios for withdrawal of oil palm plantations from peatlands in Jambi Province, Sumatra, Indonesia. Regional Environmental Change, 2019, 19, 1201-1215.	1.4	10
40	Excess nutrient loads to Lake Taihu: Opportunities for nutrient reduction. Science of the Total Environment, 2019, 664, 865-873.	3.9	68
41	From sustainable drinking water to tsunami hazards: modelling water science for impact. Journal of Integrative Environmental Sciences, 2019, 16, 157-161.	1.0	0
42	Modeling nutrients in Lake Dianchi (China) and its watershed. Agricultural Water Management, 2019, 212, 48-59.	2.4	54
43	Cryptosporidium concentrations in rivers worldwide. Water Research, 2019, 149, 202-214.	5.3	39
44	Nutrient losses to surface waters in Hai He basin: A case study of Guanting reservoir and Baiyangdian lake. Agricultural Water Management, 2019, 213, 62-75.	2.4	43
45	Global multi-pollutant modelling of water quality: scientific challenges and future directions. Current Opinion in Environmental Sustainability, 2019, 36, 116-125.	3.1	80
46	Bridging global, basin and local-scale water quality modeling towards enhancing water quality management worldwide. Current Opinion in Environmental Sustainability, 2019, 36, 39-48.	3.1	41
47	Hotspots for Nitrogen and Phosphorus Losses from Food Production in China: A County-Scale Analysis. Environmental Science & Technology, 2018, 52, 5782-5791.	4.6	129
48	Exploring nutrient management options to increase nitrogen and phosphorus use efficiencies in food production of China. Agricultural Systems, 2018, 163, 58-72.	3.2	62
49	Modeling the Fate and Transport of Plastic Debris in Freshwaters: Review and Guidance. Handbook of Environmental Chemistry, 2018, , 125-152.	0.2	78
50	River export of triclosan from land to sea: A global modelling approach. Science of the Total Environment, 2018, 621, 1280-1288.	3.9	39
51	Designing Vulnerable Zones of Nitrogen and Phosphorus Transfers To Control Water Pollution in China. Environmental Science & Technology, 2018, 52, 8987-8988.	4.6	49
52	New generation of knowledge: Towards an inter- and transdisciplinary framework for sustainable pathways of palm oil production. Njas - Wageningen Journal of Life Sciences, 2017, 80, 75-84.	7.9	17
53	Improving environmental sustainability of Thai palm oil production in 2050. Journal of Cleaner Production, 2017, 147, 572-588.	4.6	22
54	Human waste: An underestimated source of nutrient pollution in coastal seas of Bangladesh, India and Pakistan. Marine Pollution Bulletin, 2017, 118, 131-140.	2.3	28

#	Article	IF	CITATIONS
55	Modeling farm nutrient flows in the North China Plain to reduce nutrient losses. Nutrient Cycling in Agroecosystems, 2017, 108, 231-244.	1.1	22
56	Production of Caproic Acid from Mixed Organic Waste: An Environmental Life Cycle Perspective. Environmental Science & Technology, 2017, 51, 7159-7168.	4.6	120
57	Export of microplastics from land to sea. A modelling approach. Water Research, 2017, 127, 249-257.	5.3	402
58	Reactive nitrogen losses from China's food system for the shared socioeconomic pathways (SSPs). Science of the Total Environment, 2017, 605-606, 884-893.	3.9	25
59	Modeling sources of nutrients in rivers draining into the Bay of Bengal—a scenario analysis. Regional Environmental Change, 2017, 17, 2495-2506.	1.4	19
60	Reducing future river export of nutrients to coastal waters of China in optimistic scenarios. Science of the Total Environment, 2017, 579, 517-528.	3.9	52
61	Modelling reduced coastal eutrophication with increased crop yields in Chinese agriculture. Soil Research, 2017, 55, 506.	0.6	13
62	Options to reduce environmental impacts of palm oil production in Thailand. Journal of Cleaner Production, 2016, 137, 370-393.	4.6	20
63	Global modelling of surface water quality: a multi-pollutant approach. Current Opinion in Environmental Sustainability, 2016, 23, 35-45.	3.1	50
64	Indonesia palm oil production without deforestation and peat conversion by 2050. Science of the Total Environment, 2016, 557-558, 562-570.	3.9	79
65	Excessive nitrogen and phosphorus in European rivers: 2000–2050. Ecological Indicators, 2016, 67, 328-337.	2.6	57
66	The MARINA model (Model to Assess River Inputs of Nutrients to seAs): Model description and results for China. Science of the Total Environment, 2016, 562, 869-888.	3.9	97
67	Alarming nutrient pollution of Chinese rivers as a result of agricultural transitions. Environmental Research Letters, 2016, 11, 024014.	2.2	148
68	Comparison of different methods to include recycling in LCAs of aluminium cans and disposable polystyrene cups. Waste Management, 2016, 48, 565-583.	3.7	64
69	Can computer models be used for social learning? A serious game in water management. Environmental Modelling and Software, 2016, 75, 119-132.	1.9	58
70	Future scenarios for N2O emissions from biodiesel production in Europe. Journal of Integrative Environmental Sciences, 2015, 12, 17-30.	1.0	2
71	Modelling the impact of sanitation, population growth and urbanization on human emissions of <i>Cryptosporidium</i> to surface waters—a case study for Bangladesh and India. Environmental Research Letters, 2015, 10, 094017.	2.2	28
72	Advancing waterborne pathogen modelling: lessons from global nutrient export models. Current Opinion in Environmental Sustainability, 2015, 14, 109-120.	3.1	21

#	Article	IF	CITATIONS
73	Non-CO ₂ greenhouse gas emissions from palm oil production in Thailand. Journal of Integrative Environmental Sciences, 2015, 12, 67-85.	1.0	9
74	The importance of non-CO ₂ greenhouse gases. Journal of Integrative Environmental Sciences, 2015, 12, 1-4.	1.0	30
75	Future trends in urbanization and coastal water pollution in the Bay of Bengal: the lived experience. Environment, Development and Sustainability, 2015, 17, 531-546.	2.7	24
76	An inventory of the emission of ammonia from agricultural fertilizer application in China for 2010 and its high-resolution spatial distribution. Atmospheric Environment, 2015, 115, 141-148.	1.9	89
77	Assessing the environmental impact of palm oil produced in Thailand. Journal of Cleaner Production, 2015, 100, 150-169.	4.6	61
78	Increasing dissolved nitrogen and phosphorus export by the Pearl River (Zhujiang): a modeling approach at the sub-basin scale to assess effective nutrient management. Biogeochemistry, 2015, 125, 221-242.	1.7	52
79	Coastal eutrophication in Europe caused by production of energy crops. Science of the Total Environment, 2015, 511, 101-111.	3.9	28
80	Evaluating environmental performance of concentrated latex production in Thailand. Journal of Cleaner Production, 2015, 98, 84-91.	4.6	55
81	Environmental implications of rural policies in China: a multi-agent model at the level of agricultural households. Journal of Integrative Environmental Sciences, 2014, 11, 17-37.	1.0	5
82	Mitigation of nitrous oxide emissions from food production in China. Current Opinion in Environmental Sustainability, 2014, 9-10, 82-89.	3.1	7
83	Reducing nitrous oxide emissions from the global food system. Current Opinion in Environmental Sustainability, 2014, 9-10, 55-64.	3.1	28
84	Measuring Social Learning in Participatory Approaches to Natural Resource Management. Environmental Policy and Governance, 2014, 24, 1-15.	2.1	47
85	The effects of dams in rivers on N and P export to the coastal waters in Indonesia in the future. Sustainability of Water Quality and Ecology, 2014, 3-4, 55-66.	2.0	11
86	Multiple data sets and modelling choices in a comparative LCA of disposable beverage cups. Science of the Total Environment, 2014, 494-495, 129-143.	3.9	43
87	Possible future effects of large-scale algae cultivation for biofuels on coastal eutrophication in Europe. Science of the Total Environment, 2014, 496, 45-53.	3.9	20
88	Increasing eutrophication in the coastal seas of China from 1970 to 2050. Marine Pollution Bulletin, 2014, 85, 123-140.	2.3	152
89	Fast increases in urban sewage inputs to rivers of Indonesia. Environment, Development and Sustainability, 2014, 16, 1077-1096.	2.7	17
90	Reducing the impact of irrigated crops on freshwater availability: the case of Brazilian yellow melons. International Journal of Life Cycle Assessment, 2014, 19, 437-448.	2.2	15

#	Article	IF	CITATIONS
91	The increasing impact of food production on nutrient export by rivers to the Bay of Bengal 1970–2050. Marine Pollution Bulletin, 2014, 80, 168-178.	2.3	33
92	Reducing future nutrient inputs to the Black Sea. Science of the Total Environment, 2014, 466-467, 253-264.	3.9	20
93	Nitrous oxide (N 2 O) emissions from human waste in 1970–2050. Current Opinion in Environmental Sustainability, 2014, 9-10, 108-121.	3.1	37
94	The contribution of systems analysis to training students in cognitive interdisciplinary skills in environmental science education. Journal of Environmental Studies and Sciences, 2013, 3, 139-152.	0.9	17
95	Nitrogen and phosphorus inputs to the Black Sea in 1970–2050. Regional Environmental Change, 2013, 13, 179-192.	1.4	52
96	The links between global carbon, water and nutrient cycles in an urbanizing world — the case of coastal eutrophication. Current Opinion in Environmental Sustainability, 2013, 5, 566-572.	3.1	41
97	The carbon footprint of exported Brazilian yellow melon. Journal of Cleaner Production, 2013, 47, 404-414.	4.6	36
98	Spatial and temporal variability of nutrient retention in river basins: A global inventory. Ecological Indicators, 2013, 34, 607-615.	2.6	27
99	Assessing planetary and regional nitrogen boundaries related to food security and adverse environmental impacts. Current Opinion in Environmental Sustainability, 2013, 5, 392-402.	3.1	210
100	Past and future trends in nutrient export by 19 rivers to the coastal waters of Indonesia. Journal of Integrative Environmental Sciences, 2013, 10, 55-71.	1.0	18
101	The essential role of expertise on natural resources in climate change Master's education. International Journal of Innovation and Sustainable Development, 2012, 6, 31.	0.3	2
102	Past and future trends in grey water footprints of anthropogenic nitrogen and phosphorus inputs to major world rivers. Ecological Indicators, 2012, 18, 42-49.	2.6	210
103	Modeling global nutrient export from watersheds. Current Opinion in Environmental Sustainability, 2012, 4, 195-202.	3.1	41
104	The effects of blue energy on future emissions of greenhouse gases and other atmospheric pollutants in China. Journal of Integrative Environmental Sciences, 2012, 9, 177-190.	1.0	8
105	Nutrient export by rivers to the coastal waters of China: management strategies and future trends. Regional Environmental Change, 2012, 12, 153-167.	1.4	45
106	Modeling global N2O emissions from aquatic systems. Current Opinion in Environmental Sustainability, 2011, 3, 350-358.	3.1	29
107	Current and future nitrous oxide emissions from African agriculture. Current Opinion in Environmental Sustainability, 2011, 3, 370-378.	3.1	46
108	The role of nitrogen in climate change. Current Opinion in Environmental Sustainability, 2011, 3, 279-280.	3.1	12

#	Article	IF	CITATIONS
109	The global nitrous oxide budget revisited. Greenhouse Gas Measurement and Management, 2011, 1, 17-26.	0.6	468
110	The Multi-Level Environmental Governance of Vietnamese Aquaculture: Global Certification, National Standards, Local Cooperatives. Journal of Environmental Policy and Planning, 2011, 13, 373-397.	1.5	53
111	Towards eco-agro industrial clusters in aquatic production: the case of shrimp processing industry in Vietnam. Journal of Cleaner Production, 2011, 19, 2107-2118.	4.6	44
112	Computer models as social learning tools in participatory integrated assessment. International Journal of Agricultural Sustainability, 2011, 9, 297-309.	1.3	28
113	Uncertainty analysis in integrated assessment: the users' perspective. Regional Environmental Change, 2010, 10, 131-143.	1.4	27
114	Past and future trends in nutrients export by rivers to the coastal waters of China. Science of the Total Environment, 2010, 408, 2075-2086.	3.9	120
115	Reducing environmental impact of dairy cattle: A Czech case study. Integrated Environmental Assessment and Management, 2010, 6, 367-377.	1.6	2
116	Greenhouse gas emissions from rubber industry in Thailand. Journal of Cleaner Production, 2010, 18, 403-411.	4.6	97
117	Global Nutrient Export from WaterSheds 2 (NEWS 2): Model development and implementation. Environmental Modelling and Software, 2010, 25, 837-853.	1.9	404
118	Water pollution by Pangasius production in the Mekong Delta, Vietnam: causes and options for control. Aquaculture Research, 2010, 42, 108-128.	0.9	66
119	Two N-visualisation tools: game versus reality. Journal of Integrative Environmental Sciences, 2010, 7, 289-299.	1.0	0
120	The potential of blue energy for reducing emissions of CO ₂ and non-CO ₂ greenhouse gases. Journal of Integrative Environmental Sciences, 2010, 7, 89-96.	1.0	59
121	Future trends in emissions of N ₂ O from rivers and estuaries. Journal of Integrative Environmental Sciences, 2010, 7, 71-78.	1.0	35
122	The role of non-CO2greenhouse gases in cost-effective strategies to reduce pollution by dairy cattle in the Czech Republic. Journal of Integrative Environmental Sciences, 2010, 7, 269-277.	1.0	0
123	Preface to special section on Past and Future Trends in Nutrient Export From Global Watersheds and Impacts on Water Quality and Eutrophication. Global Biogeochemical Cycles, 2010, 24, .	1.9	13
124	Water pollution by intensive brackish shrimp farming in south-east Vietnam: Causes and options for control. Agricultural Water Management, 2010, 97, 872-882.	2.4	161
125	Nutrients export by rivers to the coastal waters of Africa: Past and future trends. Global Biogeochemical Cycles, 2010, 24, .	1.9	67
126	Future trends in nutrient export to the coastal waters of South America: Implications for occurrence of eutrophication. Global Biogeochemical Cycles, 2010, 24, .	1.9	42

#	Article	IF	CITATIONS
127	Millennium Ecosystem Assessment scenario drivers (1970–2050): Climate and hydrological alterations. Global Biogeochemical Cycles, 2010, 24, .	1.9	98
128	Neglecting sinks for N ₂ O at the earth's surface: does it matter?. Journal of Integrative Environmental Sciences, 2010, 7, 79-87.	1.0	39
129	Strategies to reduce the environmental impact of an aluminium pressure die casting plant: A scenario analysis. Journal of Environmental Management, 2009, 90, 815-830.	3.8	14
130	Inventory of pollution reduction options for an aluminium pressure die casting plant. Resources, Conservation and Recycling, 2009, 53, 309-320.	5.3	24
131	Reconciling model results with user needs to improve climate policy. Environmental Science and Policy, 2009, 12, 959-969.	2.4	9
132	Lessons learnt from a participatory integrated assessment of greenhouse gas emission reduction options in firms. Mitigation and Adaptation Strategies for Global Change, 2008, 13, 359-378.	1.0	9
133	Future trends in environmental impact of eucalyptus-based Kraft pulp industry in Thailand: a scenario analysis. Environmental Science and Policy, 2008, 11, 545-561.	2.4	3
134	Modelling the environmental impact of an aluminium pressure die casting plant and options for control. Environmental Modelling and Software, 2008, 23, 147-168.	1.9	33
135	A framework to identify appropriate spatial and temporal scales for modeling N flows from watersheds. Ecological Modelling, 2008, 212, 256-272.	1.2	6
136	Environmental and health impact by dairy cattle livestock and manure management in the Czech Republic. Science of the Total Environment, 2008, 396, 121-131.	3.9	22
137	Critical load exceedance for nitrogen in the Ebrié Lagoon (Ivory Coast): a first assessment. Journal of Integrative Environmental Sciences, 2007, 4, 5-19.	0.8	3
138	Future trends in emissions of pollutants from the Yangtze River basin, China. Journal of Integrative Environmental Sciences, 2007, 4, 229-247.	0.8	1
139	Assessing environmental performance by combining life cycle assessment, multi-criteria analysis and environmental performance indicators. Journal of Cleaner Production, 2007, 15, 1787-1796.	4.6	283
140	Options to reduce the environmental impact by eucalyptus-based Kraft pulp industry in Thailand: model description. Journal of Cleaner Production, 2007, 15, 1827-1839.	4.6	30
141	Moving boundaries in transboundary air pollution co-production of science and policy under the convention on long range transboundary air pollution. Global Environmental Change, 2006, 16, 349-363.	3.6	53
142	Greenhouse gas emissions from willow-based electricity: a scenario analysis for Portugal and The Netherlands. Energy Policy, 2006, 34, 1367-1377.	4.2	8
143	An analysis of the environmental pressure exerted by the eucalyptus-based kraft pulp industry in Thailand. Environment, Development and Sustainability, 2006, 8, 289-311.	2.7	29
144	Evaluation of methods for quantifying agricultural emissions of air, water and soil pollutants. Science of the Total Environment, 2006, 372, 133-147.	3.9	9

#	Article	IF	CITATIONS
145	Indicators and Measures of Critical Natural Capital. , 2006, , .		1
146	Cost_effective emission abatement in agriculture in the presence of interrelations: cases for the Netherlands and Europe. Ecological Economics, 2005, 53, 59-74.	2.9	30
147	New estimates of global emissions of N2O from rivers and estuaries. Journal of Integrative Environmental Sciences, 2005, 2, 159-165.	0.8	69
148	Integrated water pollution assessment of the Ebrié Lagoon, Ivory Coast, West Africa. Journal of Marine Systems, 2004, 44, 1-17.	0.9	72
149	The power sector in China and India: greenhouse gas emissions reduction potential and scenarios for 1990–2020. Energy Policy, 2004, 32, 55-76.	4.2	39
150	Title is missing!. Nutrient Cycling in Agroecosystems, 2003, 66, 43-69.	1.1	60
151	Environmental Economics for Environmental Protection. Scientific World Journal, The, 2002, 2, 1254-1266.	0.8	2
152	Global patterns of dissolved inorganic and particulate nitrogen inputs to coastal systems: Recent conditions and future projections. Estuaries and Coasts, 2002, 25, 640-655.	1.7	251
153	The potential contribution of renewable energy in air pollution abatement in China and India. Energy Policy, 2002, 30, 409-424.	4.2	45
154	Title is missing!. Environmental Modeling and Assessment, 2002, 7, 163-178.	1.2	1
155	Future Trends in Worldwide River Nitrogen Transport and Related Nitrous Oxide Emissions: A Scenario Analysis. Scientific World Journal, The, 2001, 1, 328-335.	0.8	10
156	Cost-Effective Emission Abatement in Europe Considering Interrelations in Agriculture. Scientific World Journal, The, 2001, 1, 814-821.	0.8	5
157	Title is missing!. Nutrient Cycling in Agroecosystems, 2001, 60, 209-218.	1.1	0
158	Ammonia abatement and its impact on emissions of nitrous oxide and methane—Part 2: application for Europe. Atmospheric Environment, 2001, 35, 6313-6325.	1.9	29
159	Global distribution of N2O emissions from aquatic systems: natural emissions and anthropogenic effects. Chemosphere, 2000, 2, 267-279.	1.2	187
160	Potential impact on the global atmospheric N2O budget of the increased nitrogen input required to meet future global food demands. Chemosphere, 2000, 2, 465-473.	1.2	107
161	Quantifying the environmental impact of production in agriculture and horticulture in The Netherlands: which emissions do we need to consider?. Agricultural Systems, 2000, 66, 167-189.	3.2	21

New Estimates for Emissions of Nitrous Oxide. , 2000, , 45-64.

#	Article	IF	CITATIONS
163	NH3 abatement in Europe and the impact on greenhouse gas emissions: An analysis with RAINS. , 2000, , 491-492.		1
164	An overview of the revised 1996 IPCC guidelines for national greenhouse gas inventory methodology for nitrous oxide from agriculture. Environmental Science and Policy, 1999, 2, 325-333.	2.4	40
165	Closing the global N2O budget: A retrospective analysis 1500-1994. Global Biogeochemical Cycles, 1999, 13, 1-8.	1.9	418
166	Closing the global N2O budget: nitrous oxide emissions through the agricultural nitrogen cycle. Nutrient Cycling in Agroecosystems, 1998, 52, 225-248.	1.1	1,036
167	Title is missing!. Nutrient Cycling in Agroecosystems, 1998, 52, 195-212.	1.1	103
168	Title is missing!. Water, Air, and Soil Pollution, 1998, 107, 197-218.	1.1	1
169	Clobal distribution of nitrous oxide production and N inputs in freshwater and coastal marine ecosystems. Clobal Biogeochemical Cycles, 1998, 12, 93-113.	1.9	492
170	Integrated assessment models for acid rain. European Journal of Operational Research, 1997, 102, 405-417.	3.5	29
171	Inventory of strategies for reducing anthropogenic emissions of N2O and potential reduction of emissions in The Netherlands. Mitigation and Adaptation Strategies for Global Change, 1996, 1, 115-137.	1.0	4
172	Emissions inventories and options for control. Studies in Environmental Science, 1995, 65, 663-668.	0.0	1
173	Nitrous oxide and global warming. Science of the Total Environment, 1994, 143, 193-209.	3.9	58
174	Anthropogenic emissions of nitrous oxide (N2O) from Europe. Science of the Total Environment, 1994, 152, 189-205.	3.9	26
175	Halocarbons and global warming. Science of the Total Environment, 1992, 111, 1-24.	3.9	23
176	Halocarbons and global warming, II. Science of the Total Environment, 1992, 112, 269-290.	3.9	5
177	Halocarbons and global warming, III. Science of the Total Environment, 1992, 112, 291-314.	3.9	4
178	Effects of oil palm expansion through direct and indirect land use change in Tapi river basin, Thailand. International Journal of Biodiversity Science, Ecosystem Services & Management, 0, , 1-23.	2.9	15