Yusuke Sunada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6680212/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Iron Disilyl Complex as an Effective Catalyst for Hydrogenation of Unfunctionalized Multisubstituted Alkenes. ACS Sustainable Chemistry and Engineering, 2022, 10, 1078-1082.	6.7	7
2	Metalation-induced denitrogenative reductive coupling of isocyanides on a silylene-bridged nickel cluster. Chemical Science, 2022, 13, 4115-4121.	7.4	6
3	An Iridium Complex with a Phosphineâ€Pendant Silyl Ligand as an Efficient Catalyst for the (<i>E)</i> elective Semihydrogenation of Alkynes. European Journal of Organic Chemistry, 2022, 2022, .	2.4	5
4	Cobalt-Catalyzed Carbo- and Hydrocyanation of Alkynes via C–CN Bond Activation. ACS Catalysis, 2022, 12, 4054-4066.	11.2	11
5	Discrete palladium clusters that consist of two mutually bisecting perpendicular planes. Chemical Science, 2022, 13, 7610-7615.	7.4	2
6	"Template synthesis―of discrete metal clusters with two- or three-dimensional architectures. Coordination Chemistry Reviews, 2022, 469, 214673.	18.8	13
7	Fourâ€Coordinated Manganese(II) Disilyl Complexes for the Hydrosilylation of Aldehydes and Ketones with 1,1,3,3â€Tetramethyldisiloxane. ChemCatChem, 2021, 13, 1152-1156.	3.7	14
8	Silyleneâ€Bridged Tetranuclear Palladium Cluster as a Catalyst for Hydrogenation of Alkenes and Alkynes. ChemCatChem, 2021, 13, 169-173.	3.7	10
9	Nuclearity expansion in Pd clusters triggered by the migration of a phenyl group in cyclooligosilanes. Chemical Communications, 2021, 57, 7649-7652.	4.1	7
10	Pt-Catalyzed D-Glucose Oxidation Reactions for Glucose Fuel Cells. Journal of the Electrochemical Society, 2021, 168, 064511.	2.9	12
11	Triangular Palladium Cluster from Activation of the Si–Si Bond in a Disilane with Phosphine Pendants. Inorganic Chemistry, 2021, 60, 15101-15105.	4.0	11
12	Supersilyl as an effective monodentate ligand to stabilize four-coordinate manganese(<scp>ii</scp>) complexes. Dalton Transactions, 2020, 49, 17537-17541.	3.3	5
13	Insertion of Ni(0) and Pd(0) precursors into the Si–Si bond of a disilane with two hypercoordinate silicon atoms. Chemical Communications, 2020, 56, 8464-8467.	4.1	10
14	A Four Coordinated Iron(II)-Digermyl Complex as an Effective Precursor for the Catalytic Dehydrogenation of Ammonia Borane. Catalysts, 2020, 10, 29.	3.5	5
15	Iridium-PPh ₃ Catalysts for Conversion of Amides to Enamines. Organometallics, 2019, 38, 852-862.	2.3	23
16	Theoretical Study on the Rhodium-Catalyzed Hydrosilylation of Câ•€ and Câ•O Double Bonds with Tertiary Silane. Journal of Organic Chemistry, 2019, 84, 8552-8561.	3.2	17
17	An isolable iron(<scp>ii</scp>) bis(supersilyl) complex as an effective catalyst for reduction reactions. Dalton Transactions, 2019, 48, 2891-2895.	3.3	20
18	Dimensionality Expansion of a Butterfly Shaped Pd 4 Framework: Constructing Edgeâ€Sharing Pd 6 Tetrahedra. Chemistry - A European Journal, 2019, 25, 3761-3765.	3.3	17

#	Article	IF	CITATIONS
19	Disilaruthena- and Ferracyclic Complexes Containing Isocyanide Ligands as Effective Catalysts for Hydrogenation of Unfunctionalized Sterically Hindered Alkenes. Journal of the American Chemical Society, 2018, 140, 4119-4134.	13.7	38
20	Remarkably high catalyst efficiency of a disilaruthenacyclic complex for hydrosilane reduction of carbonyl compounds. Chemical Communications, 2018, 54, 11192-11195.	4.1	6
21	Radical-Organometallic Hybrid Reaction System Enabling Couplings between Tertiary-Alkyl Groups and 1-Alkenyl Groups. ACS Catalysis, 2018, 8, 6791-6795.	11.2	23
22	Syntheses of Substituted 1,4-Disila-2,5-cyclohexadienes from Cyclic Hexasilane Si ₆ Me ₁₂ and Alkynes via Successive Si–Si Bond Activation by Pd/Isocyanide Catalysts. Organometallics, 2018, 37, 2531-2543.	2.3	11
23	<i>ï, </i> -CAM Mechanisms for the Hydrogenation of Alkenes by <i>cis</i> - and <i>trans</i> -Disilametallacyclic Carbonyl Complexes (M = Fe, Ru, Os): Experimental and Theoretical Studies. Bulletin of the Chemical Society of Japan, 2017, 90, 613-626.	3.2	9
24	Disilametallacyclic chemistry for efficient catalysis. Dalton Transactions, 2017, 46, 7644-7655.	3.3	25
25	Copperâ€Catalyzed Amination of Congested and Functionalized αâ€Bromocarboxamides with either Amines or Ammonia at Room Temperature. Angewandte Chemie, 2017, 129, 11768-11772.	2.0	5
26	Copperâ€Catalyzed Amination of Congested and Functionalized αâ€Bromocarboxamides with either Amines or Ammonia at Room Temperature. Angewandte Chemie - International Edition, 2017, 56, 11610-11614.	13.8	39
27	Construction of a Planar Tetrapalladium Cluster by the Reaction of Palladium(0) Bis(isocyanide) with Cyclic Tetrasilane. Inorganics, 2017, 5, 84.	2.7	13
28	Design and Development of Iron-based Non-precious Metal Catalyst Systems. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2017, 75, 1253-1263.	0.1	3
29	Theoretical Study of the Catalytic Hydrogenation of Alkenes by a Disilaferracyclic Complex: Can the Fe–Si σ-Bond-Assisted Activation of H–H Bonds Allow Development of a Catalysis of Iron?. Journal of Organic Chemistry, 2016, 81, 10900-10911.	3.2	18
30	Construction of the Novel Transition Metal Complexes Bearing Disilametallacycle Skeleton. Bulletin of Japan Society of Coordination Chemistry, 2016, 67, 47-61.	0.2	0
31	Theoretical Study of Pd ₁₁ Si ₆ Nanosheet Compounds Including Sevenâ€Coordinated Si Species and Its Ge Analogues. Chemistry - A European Journal, 2016, 22, 1076-1087.	3.3	13
32	Non-Precious-Metal Catalytic Systems Involving Iron or Cobalt Carboxylates and Alkyl Isocyanides for Hydrosilylation of Alkenes with Hydrosiloxanes. Journal of the American Chemical Society, 2016, 138, 2480-2483.	13.7	163
33	Persistent four-coordinate iron-centered radical stabilized by π-donation. Chemical Science, 2016, 7, 191-198.	7.4	16
34	Atom transfer radical polymerization by solvent-stabilized (Me ₃ TACN)FeX ₂ : a practical access to reusable iron(<scp>ii</scp>) catalysts. Polymer Chemistry, 2016, 7, 1037-1048.	3.9	5
35	Investigation of Organoiron Catalysis in Kumada–Tamao–Corriu-Type Cross-Coupling Reaction Assisted by Solution-Phase X-ray Absorption Spectroscopy. Bulletin of the Chemical Society of Japan, 2015, 88, 410-418.	3.2	46
36	Combinatorial Approach to the Catalytic Hydrosilylation of Styrene Derivatives: Catalyst Systems Composed of Organoiron(0) or (II) Precursors and Isocyanides. Organometallics, 2015, 34, 2896-2906.	2.3	56

#	Article	IF	CITATIONS
37	Platinum-catalyzed reduction of amides with hydrosilanes bearing dual Si–H groups: a theoretical study of the reaction mechanism. Dalton Transactions, 2015, 44, 19344-19356.	3.3	22
38	Catalyst Design of Vaska-Type Iridium Complexes for Highly Efficient Synthesis of π-Conjugated Enamines. Organometallics, 2015, 34, 4895-4907.	2.3	39
39	Wellâ€Defined Iron Complexes as Efficient Catalysts for "Green―Atomâ€Transfer Radical Polymerization of Styrene, Methyl Methacrylate, and Butyl Acrylate with Low Catalyst Loadings and Catalyst Recycling. Chemistry - A European Journal, 2014, 20, 5802-5814.	3.3	23
40	Synthesis, structures, and reactivity of the base-stabilized silanone molybdenum complexes. Dalton Transactions, 2014, 43, 16610-16613.	3.3	35
41	Disilaferracycle Dicarbonyl Complex Containing Weakly Coordinated η ² -(H-Si) Ligands: Application to C–H Functionalization of Indoles and Arenes. Organometallics, 2014, 33, 5936-5939.	2.3	54
42	Catalyst design for iron-promoted reductions: an iron disilyl-dicarbonyl complex bearing weakly coordinating I·2-(H–Si) moieties. Dalton Transactions, 2013, 42, 16687.	3.3	57
43	Disilametallacycles as a Platform for Stabilizing M(II) and M(IV) (M = Fe, Ru) Centers: Synthesis and Characterization of Half-Sandwich Complexes and Their Application to Catalytic Double Silylation of Alkenes and Alkynes. Organometallics, 2013, 32, 2112-2120.	2.3	21
44	A ladder polysilane as a template for folding palladium nanosheets. Nature Communications, 2013, 4, 2014.	12.8	36
45	Iron promoted conjugate addition: implication of the six-centered mechanism based on the isolation of the iron-enolate intermediate. Chemical Communications, 2012, 48, 12231.	4.1	8
46	New catalyst systems for iron-catalyzed hydrosilane reduction of carboxamides. Chemical Communications, 2011, 47, 6581.	4.1	72
47	Novel Disilaplatinacyclopentenes Bearing Dialkylsulfide Ligands: Preparation, Characterization, and Mechanistic Consideration of Hydrosilane Reduction of Carboxamides by Bifunctional Organohydrosilanes. Organometallics, 2011, 30, 68-76.	2.3	19
48	Chiral Bis(oxazoline) Ruthenium Complexes with Bipyridylâ€Type <i>N</i> â€Heteroaromatics: Comparative Stereochemical and Photochemical Characterization of their Λ―and Δâ€Diastereomeric Geminate Isomers. Chemistry - an Asian Journal, 2011, 6, 1405-1415.	3.3	4
49	Half-Sandwich (η ⁶ -Arene)iron(II) Dinitrogen Complexes Bearing a Disilaferracycle Skeleton as a Precursor for Double Silylation of Ethylene and Alkynes. Organometallics, 2010, 29, 6157-6160.	2.3	27
50	New Iron(II) Complexes for Atomâ€Transfer Radical Polymerization: The Ligand Design for Triazacyclononane Results in High Reactivity and Catalyst Performance. Advanced Synthesis and Catalysis, 2009, 351, 2086-2090.	4.3	24
51	Hydrosilane Reduction of Tertiary Carboxamides by Iron Carbonyl Catalysts. Angewandte Chemie - International Edition, 2009, 48, 9511-9514.	13.8	234
52	Mono- and bimetallic ethylene polymerization catalysts having an azanickellacyclopentene skeleton. Polyhedron, 2009, 28, 3935-3944.	2.2	6
53	Two coordination modes of TCNE in the ruthenium amidinates: The first example providing experimental evidence for κ1-N to η2-C rearrangement. Journal of Organometallic Chemistry, 2009, 694, 795-800.	1.8	8
54	Synthesis, Structures, and Electronic Properties of [8Fe-7S] Cluster Complexes Modeling the Nitrogenase P-Cluster. Journal of the American Chemical Society, 2009, 131, 13168-13178.	13.7	62

#	Article	IF	CITATIONS
55	Effect of TMEDA on Iron-Catalyzed Coupling Reactions of ArMgX with Alkyl Halides. Journal of the American Chemical Society, 2009, 131, 6078-6079.	13.7	216
56	Nickel(II), Palladium(II), and Platinum(II) η3-Allyl Complexes Bearing a Bidentate Titanium(IV) Phosphinoamide Ligand: A Tiâ†M2 Dative Bond Enhances the Electrophilicity of the Ï€-Allyl Moiety. Organometallics, 2009, 28, 1988-1991.	2.3	61
57	Experimental and theoretical aspects of the haptotropic rearrangement of diiron and diruthenium carbonyl complexes bound to 4,6,8-trimethylazulene. Dalton Transactions, 2008, , 2708.	3.3	9
58	"Synergistic Effects of Two Siâ^'H Groups and a Metal Center―in Transition Metal-Catalyzed Hydrosilylation of Unsaturated Molecules: A Mechanistic Study of the RhCl(PPh ₃) ₃ -Catalyzed Hydrosilylation of Ketones with 1,2-Bis(dimethylsilyl)benzene. Organometallics, 2008, 27, 3502-3513.	2.3	29
59	A Bis-[C(trimethylsilyl)-N-arylimino]dimethylsilane, Me3Si(CNAr)SiMe2(CNAr)SiMe3 (Ar = 2,6-xylyl), as a New β-Diimine Ligand. Organometallics, 2007, 26, 6055-6058.	2.3	12
60	Zirconium(IV) Tris(phosphinoamide) Complexes as a Tripodal-Type Metalloligand: A Route to Zr–M (M =) Tj ETQ 2897-2908.	9q0 0 0 rg 2.0	BT /Overlock 37
61	Trifluoromethanesulfonate (triflate) as a moderately coordinating anion: Studies from chemistry of the cationic coordinatively unsaturated mono- and diruthenium amidinates. Journal of Organometallic Chemistry, 2007, 692, 382-394.	1.8	37
62	Dynamic Titanium Phosphinoamides as Unique Bidentate Phosphorus Ligands for Platinum. Organometallics, 2006, 25, 1987-1994.	2.3	59
63	Theory of chemical bonds in metalloenzymes V: Hybrid-DFT studies of the inorganic [8Fe–7S] core. International Journal of Quantum Chemistry, 2006, 106, 3288-3302.	2.0	28
64	Titanium(IV) phosphinoamide as a unique bidentate ligand for late transition metals II: TiRu heterobimetallics bearing a bridging chlorine atom. Journal of Organometallic Chemistry, 2006, 691, 3176-3182.	1.8	32
65	Synthesis of [2Fe–2S] and [4Fe–4S] Clusters Having Terminal Amide Ligands from an Iron(II) Amide Complex. Chemistry Letters, 2005, 34, 172-173.	1.3	48
66	Homo- and Heteronuclear Complexes of (Pentamethylcyclopentadienyl)rhodium(III) Bearing Bis(diphenylphosphanylmethyl)phenylphosphane. European Journal of Inorganic Chemistry, 2004, 2004, 134-142.	2.0	12
67	Homo- and heteronuclear complexes based on arene ruthenium complexes bearing bis(diphenylphosphinomethyl)phenylphosphine (dpmp). Inorganica Chimica Acta, 2004, 357, 1270-1282.	2.4	7
68	Reactions of rhodium(II) and iridium(III) complexes bearing a P,O-coordination with tetracyanoethylene in the presence of KPF6. Inorganica Chimica Acta, 2004, 357, 2833-2840.	2.4	7
69	Quasi-octahedral complexes of pentamethylcyclopentadienyliridium(iii) bearing bis(diphenylphosphinomethyl)phenylphosphine (dpmp). Dalton Transactions, 2004, , 2969.	3.3	11
70	Synthesis of the P-Cluster Inorganic Core of Nitrogenases. Journal of the American Chemical Society, 2003, 125, 4052-4053.	13.7	101
71	Stereochemistry of mono- and dinuclear complexes of rhodium, iridium and ruthenium bearing bis(diphenylphosphinomethyl)phenylphosphine. Journal of Organometallic Chemistry, 2003, 671, 8-12.	1.8	14
72	Alkynethiolato and Alkyneselenolato Ruthenium Half-Sandwich Complexes:Â Synthesis, Structures, and Reactions with (η5-C5H5)2Zr. Inorganic Chemistry, 2001, 40, 7072-7078.	4.0	55