
Liwu Mo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6680041/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of ethylenediamine tetra-acetic acid (EDTA) on the accelerated carbonation and properties of artificial steel slag aggregates. Cement and Concrete Composites, 2021, 118, 103948.	10.7	48
2	Mitigating autogenous shrinkage using a combination of superabsorbent polymer and magnesia-based expansive additive. Advances in Cement Research, 2021, 33, 447-457.	1.6	1
3	One-pot synthesis of Mg Al layered double hydroxide (LDH) using MgO and metakaolin (MK) as precursors. Applied Clay Science, 2021, 206, 106070.	5.2	13
4	Influence of Polyvinyl Alcohol Powder on the Mechanical Performance and Volume Stability of Sulfoaluminate–Portland Cement Composite. Crystals, 2021, 11, 692.	2.2	2
5	Effect of CO2 treatment on the microstructure and properties of steel slag supplementary cementitous materials. Construction and Building Materials, 2021, 309, 125171.	7.2	27
6	Mitigation on the autogenous shrinkage of ultra-high performance concrete via using MgO expansive agent. Construction and Building Materials, 2021, 312, 125422.	7.2	34
7	Effects of MgO Expansive Agent and Steel Fiber on Crack Resistance of a Bridge Deck. Materials, 2020, 13, 3074.	2.9	10
8	Adsorption and Desorption Characteristics of K+ and Na+ Ions in Fly Ash Blended Cement Pastes. Journal Wuhan University of Technology, Materials Science Edition, 2020, 35, 571-578.	1.0	1
9	Magnesia as an expansive additive. , 2020, , 243-274.		1
10	Preparation, microstructure and property of carbonated artificial steel slag aggregate used in concrete. Cement and Concrete Composites, 2020, 113, 103715.	10.7	87
11	Carbonated magnesia cements. , 2020, , 183-211.		0
12	Effects of magnesia expansive agents on the self-healing performance of microcracks in strain-hardening cement-based composites (SHCC). Materials Today Communications, 2020, 25, 101421.	1.9	29
13	Effects of Steel Slag Powder and Expansive Agent on the Properties of Ultra-High Performance Concrete (UHPC): Based on a Case Study. Materials, 2020, 13, 683.	2.9	34
14	Influence of Combined Action of Steel Fiber and MgO on Chloride Diffusion Resistance of Concrete. Crystals, 2020, 10, 338.	2.2	2
15	Temporal effect of MgO reactivity on the stabilization of lead contaminated soil. Environment International, 2019, 131, 104990.	10.0	49
16	Combined effects of biochar and MgO expansive additive on the autogenous shrinkage, internal relative humidity and compressive strength of cement pastes. Construction and Building Materials, 2019, 229, 116877.	7.2	61
17	Use of MgO expansion agent to compensate concrete shrinkage in jointed reinforced concrete pavement under high-altitude environmental conditions. Construction and Building Materials, 2019, 202, 528-536.	7.2	44
18	Preparation of calcium carbonate binders via CO2 activation of magnesium slag. Cement and Concrete Research, 2019, 121, 81-90.	11.0	47

Liwu Mo

#	Article	IF	CITATIONS
19	Synergetic effects of curing temperature and hydration reactivity of MgO expansive agents on their hydration and expansion behaviours in cement pastes. Construction and Building Materials, 2019, 207, 206-217.	7.2	54
20	Effects of Lightly Burnt MgO Expansive Agent on the Deformation and Microstructure of Reinforced Concrete Wall. Advances in Materials Science and Engineering, 2019, 2019, 1-9.	1.8	2
21	Properties of magnesium potassium phosphate cement pastes exposed to water curing: A comparison study on the influences of fly ash and metakaolin. Construction and Building Materials, 2019, 203, 589-600.	7.2	63
22	Adsorption and Desorption Characteristics of Alkali Ions in Hydrated C3S-nano SiO2 Pastes. Journal Wuhan University of Technology, Materials Science Edition, 2018, 33, 1176-1185.	1.0	1
23	Influence of fly ash and metakaolin on the microstructure and compressive strength of magnesium potassium phosphate cement paste. Cement and Concrete Research, 2018, 111, 116-129.	11.0	159
24	Carbon dioxide sequestration on steel slag. , 2018, , 175-197.		6
25	Accelerated carbonation and performance of concrete made with steel slag as binding materials and aggregates. Cement and Concrete Composites, 2017, 83, 138-145.	10.7	194
26	Mechanical properties and microstructure of blended cement containing modified quartz tailing. Journal Wuhan University of Technology, Materials Science Edition, 2017, 32, 1140-1146.	1.0	10
27	Influence of modified quartz tailing on strength and autogenous shrinkage of cement pastes. Advances in Cement Research, 2017, 29, 11-20.	1.6	4
28	Effectiveness of using CO 2 pressure to enhance the carbonation of Portland cement-fly ash-MgO mortars. Cement and Concrete Composites, 2016, 70, 78-85.	10.7	54
29	Mechanical performance and microstructure of the calcium carbonate binders produced by carbonating steel slag paste under CO2 curing. Cement and Concrete Research, 2016, 88, 217-226.	11.0	171
30	Influence of pH on the formation of gypsum in cement materials during sulfate attack. Advances in Cement Research, 2015, 27, 487-493.	1.6	29
31	Deterioration mechanism of Portland cement paste subjected to sodium sulfate attack. Advances in Cement Research, 2015, 27, 477-486.	1.6	26
32	Deformation and mechanical properties of the expansive cements produced by inter-grinding cement clinker and MgOs with various reactivities. Construction and Building Materials, 2015, 80, 1-8.	7.2	47
33	Deformation and mechanical properties of quaternary blended cements containing ground granulated blast furnace slag, fly ash and magnesia. Cement and Concrete Research, 2015, 71, 7-13.	11.0	49
34	Effects of carbonation treatment on the properties of hydrated fly ash-MgO-Portland cement blends. Construction and Building Materials, 2015, 96, 147-154.	7.2	69
35	MgO expansive cement and concrete in China: Past, present and future. Cement and Concrete Research, 2014, 57, 1-12.	11.0	248
36	Properties of binary and ternary reactive MgO mortar blends subjected to CO2 curing. Cement and Concrete Composites, 2013, 38, 40-49.	10.7	82

Liwu Mo

#	Article	IF	CITATIONS
37	Early age stability of concrete pavement by using hybrid fiber together with MgO expansion agent in high altitude locality. Construction and Building Materials, 2013, 48, 685-690.	7.2	44
38	Accelerated carbonation – A potential approach to sequester CO2 in cement paste containing slag and reactive MgO. Cement and Concrete Composites, 2013, 43, 69-77.	10.7	136
39	Surface modification of fly ashes with carbide slag and its effect on compressive strength and autogenous shrinkage of blended cement pastes. Journal Wuhan University of Technology, Materials Science Edition, 2012, 27, 1149-1153.	1.0	11
40	Effects of accelerated carbonation on the microstructure of Portland cement pastes containing reactive MgO. Cement and Concrete Research, 2012, 42, 769-777.	11.0	207
41	Effect of combination of steel fiber and MgO-type expansive agent on properties of concrete. Journal Wuhan University of Technology, Materials Science Edition, 2011, 26, 786-790.	1.0	24
42	Effects of calcination condition on expansion property of MgO-type expansive agent used in cement-based materials. Cement and Concrete Research, 2010, 40, 437-446.	11.0	267