Xing Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6679984/publications.pdf Version: 2024-02-01

		108046	107981
121	4,726	37	68
papers	citations	h-index	g-index
123	123	123	8189
all docs	docs citations	times ranked	citing authors

Хімс 7ни

#	Article	IF	CITATIONS
1	Deep subwavelength control of valley polarized cathodoluminescence in h-BN/WSe2/h-BN heterostructure. Nature Communications, 2021, 12, 291.	5.8	25
2	Plasmonic Modulation of Valleytronic Emission in Twoâ€Dimensional Transition Metal Dichalcogenides. Advanced Functional Materials, 2021, 31, 2010234.	7.8	21
3	Spontaneous Emission of Plasmonâ€Exciton Polaritons Revealed by Ultrafast Nonradiative Decays. Laser and Photonics Reviews, 2020, 14, 2000233.	4.4	8
4	Lightâ€Controlled Nearâ€Field Energy Transfer in Plasmonic Metasurface Coupled MoS 2 Monolayer. Small, 2020, 16, 2003539.	5.2	16
5	Controllable inversion symmetry breaking in single layer graphene induced by sub-lattice contrasted charge polarization. Carbon, 2020, 163, 63-69.	5.4	2
6	Ultrathin circular polarimeter based on chiral plasmonic metasurface and monolayer MoSe ₂ . Nanoscale, 2020, 12, 5906-5913.	2.8	34
7	Efficient Allâ€Optical Plasmonic Modulators with Atomically Thin Van Der Waals Heterostructures. Advanced Materials, 2020, 32, e1907105.	11.1	44
8	Bi-channel near- and far-field optical vortex generator based on a single plasmonic metasurface. Photonics Research, 2020, 8, 986.	3.4	19
9	Plasmonic-modulated dissipative-driven multiqubit entanglement under asymmetric detuning. Physical Review B, 2019, 100, .	1.1	8
10	High-efficiency modulation of coupling between different polaritons in an in-plane graphene/hexagonal boron nitride heterostructure. Nanoscale, 2019, 11, 2703-2709.	2.8	24
11	Plasmonic Circular Dichroism of Gold Nanoparticle Based Nanostructures. Advanced Optical Materials, 2019, 7, 1801590.	3.6	46
12	Self-Learning Perfect Optical Chirality via a Deep Neural Network. Physical Review Letters, 2019, 123, 213902.	2.9	72
13	Imaging of Plasmonic Chiral Radiative Local Density of States with Cathodoluminescence Nanoscopy. Nano Letters, 2019, 19, 775-780.	4.5	43
14	Direct observation of ultrafast plasmonic hot electron transfer in the strong coupling regime. Light: Science and Applications, 2019, 8, 9.	7.7	150
15	Mode Controlling of Surface Plasmon Polaritons by Geometric Phases. Plasmonics, 2019, 14, 785-790.	1.8	1
16	Perfect-absorption graphene metamaterials for surface-enhanced molecular fingerprint spectroscopy. Nanotechnology, 2018, 29, 184004.	1.3	22
17	Deep-Subwavelength Resolving and Manipulating of Hidden Chirality in Achiral Nanostructures. ACS Nano, 2018, 12, 3908-3916.	7.3	57
18	Plasmonicâ€Functionalized Broadband Perovskite Photodetector. Advanced Optical Materials, 2018, 6, 1701271.	3.6	86

Xing Zhu

#	Article	IF	CITATIONS
19	Spinâ€Controlled Integrated Near―and Farâ€Field Optical Launcher. Advanced Functional Materials, 2018, 28, 1705503.	7.8	39
20	Reveal and Control of Chiral Cathodoluminescence at Subnanoscale. Nano Letters, 2018, 18, 567-572.	4.5	49
21	Nanoscience and Nanotechnology Research at Peking University. ACS Nano, 2018, 12, 4075-4076.	7.3	2
22	Scanning cathodoluminescence microscopy: applications in semiconductor and metallic nanostructures. Opto-Electronic Advances, 2018, 1, 18000701-18000711.	6.4	13
23	Revealing the spin optics in conic-shaped metasurfaces. Physical Review B, 2017, 95, .	1.1	44
24	Temperature dependent Raman and photoluminescence of vertical WS2/MoS2 monolayer heterostructures. Science Bulletin, 2017, 62, 16-21.	4.3	37
25	Plasmonic hot electron tunneling photodetection in vertical Au–graphene hybrid nanostructures. Laser and Photonics Reviews, 2017, 11, 1600148.	4.4	61
26	Near-Field Raman Spectroscopy with Aperture Tips. Chemical Reviews, 2017, 117, 5095-5109.	23.0	60
27	Single-Nanoparticle Plasmonic Electro-optic Modulator Based on MoS ₂ Monolayers. ACS Nano, 2017, 11, 9720-9727.	7.3	90
28	Higher order Fano graphene metamaterials for nanoscale optical sensing. Nanoscale, 2017, 9, 14998-15004.	2.8	56
29	Spin-Controlled Directional Launching of Surface Plasmons Under Oblique Illumination. Plasmonics, 2017, 12, 729-734.	1.8	0
30	Enhanced optical performance of multifocal metalens with conic shapes. Light: Science and Applications, 2017, 6, e17071-e17071.	7.7	47
31	Spin-controlled directional launching of surface plasmons at the subwavelength scale. Chinese Physics B, 2016, 25, 087302.	0.7	1
32	Unidirectional propagation of surface plasmons under active control. Proceedings of SPIE, 2016, , .	0.8	0
33	Plasmonics: Magnetic Plasmonic Fano Resonance at Optical Frequency (Small 18/2015). Small, 2015, 11, 2102-2102.	5.2	1
34	Graphene Quantum Dots Doping of MoS ₂ Monolayers. Advanced Materials, 2015, 27, 5235-5240.	11.1	168
35	A high-selective positive-type developing technique for phase-change inorganic resist Ge2Sb2(1â^')Bi2Te5. Materials Science in Semiconductor Processing, 2015, 40, 690-694.	1.9	7
36	Plasmonic hot electron enhanced MoS ₂ photocatalysis in hydrogen evolution. Nanoscale, 2015, 7, 4482-4488.	2.8	169

#	Article	IF	CITATIONS
37	Magnetic Plasmonic Fano Resonance at Optical Frequency. Small, 2015, 11, 2177-2181.	5.2	66
38	Plasmonic Toroidal Dipolar Response under Radially Polarized Excitation. Scientific Reports, 2015, 5, 11793.	1.6	65
39	Plasmonic circular polarization analyzer formed by unidirectionally controlling surface plasmon propagation. Applied Physics Letters, 2015, 106, 161106.	1.5	18
40	Introduction to ChinaNANO 2013. Chinese Physics B, 2014, 23, 088101.	0.7	0
41	Plasmonic focusing in spiral nanostructures under linearly polarized illumination. Optics Express, 2014, 22, 16686.	1.7	17
42	Polarization dependence of the light coupling to surface plasmons in an Ag nanoparticle & Ag nanowire system. Chinese Physics B, 2014, 23, 117302.	0.7	2
43	Plasmonic waveplate: incident polarization modulation. Applied Physics A: Materials Science and Processing, 2014, 115, 589-593.	1.1	1
44	Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays. Nano Letters, 2014, 14, 299-304.	4.5	565
45	A study on inorganic phase-change resist Ge ₂ Sb _{2(1â^'x)} Bi _{2x} Te ₅ and its mechanism. Physical Chemistry Chemical Physics, 2014, 16, 22281-22286.	1.3	13
46	Plasmonic Hot Electron Induced Structural Phase Transition in a MoS ₂ Monolayer. Advanced Materials, 2014, 26, 6467-6471.	11.1	516
47	Plasmonic Focusing in Nanostructures. Plasmonics, 2014, 9, 879-886.	1.8	8
48	Plasmonic properties and device in nanostructures. Applied Physics A: Materials Science and Processing, 2013, 112, 15-22.	1.1	1
49	Plasmonics in Nanostructures. Advanced Materials, 2013, 25, 3840-3856.	11.1	134
50	Absorption Enhancements in Plasmonic Solar Cells Coated with Metallic Nanoparticles. Plasmonics, 2013, 8, 877-883.	1.8	10
51	Substrate-mediated charge transfer plasmons in simple and complex nanoparticle clusters. Nanoscale, 2013, 5, 9897.	2.8	47
52	Au Core/Au–Ag Alloy Shell Nanorods: Composition- and Shape-Tailored Optical Responses. Journal of Nanoscience and Nanotechnology, 2013, 13, 1006-1010.	0.9	2
53	Selected Peer-Reviewed Articles from the International Conference on Nanoscience and Technology, China 2011 (ChinaNANO 2011). Journal of Nanoscience and Nanotechnology, 2013, 13, 733-735.	0.9	1
54	Scattering of Light by Plasmonic Nanoparticles on a Silicon Substrate. ChemPhysChem, 2012, 13, 2573-2577.	1.0	10

#	Article	IF	CITATIONS
55	Tunable wide-angle plasmonic perfect absorber at visible frequencies. Physical Review B, 2012, 85, .	1.1	125
56	Au@Pt core/shell nanorods with peroxidase- and ascorbate oxidase-like activities for improved detection of glucose. Sensors and Actuators B: Chemical, 2012, 166-167, 708-714.	4.0	171
57	Screening of inhibitors for oxidase mimics of Au@Pt nanorods by catalytic oxidation of OPD. Chemical Communications, 2011, 47, 10981.	2.2	94
58	Plasmonic Coupling of Bow Tie Antennas with Ag Nanowire. Nano Letters, 2011, 11, 1676-1680.	4.5	142
59	Plasmonic Focusing in Symmetry Broken Nanocorrals. Nano Letters, 2011, 11, 893-897.	4.5	141
60	Removing a Wedge from a Metallic Nanodisk Reveals a Fano Resonance. Nano Letters, 2011, 11, 4475-4479.	4.5	190
61	Incident angle dependence of absorption enhancement in plasmonic solar cells. Optics Express, 2011, 19, A763.	1.7	37
62	Microwires and microtwists from X-shaped conjugated molecules as low-loss, long distance photo waveguide materials. Organic Electronics, 2011, 12, 453-460.	1.4	7
63	Characteristics of charge density waves on the surfaces of quasi-one-dimensional charge-transfer complex layered organic crystals. Physical Review B, 2011, 83, .	1.1	0
64	Micropore Structure Representation of Sandstone in Petroleum Reservoirs Using an Atomic Force Microscope. Chinese Physics Letters, 2011, 28, 080701.	1.3	2
65	<i>A Special Issue on ChinaNANO</i> 2009, Beijing, China. Journal of Nanoscience and Nanotechnology, 2010, 10, 6997-6999.	0.9	0
66	Antenna-Mediated Coupling of Light into Ag Nanowire. Journal of Nanoscience and Nanotechnology, 2010, 10, 7171-7174.	0.9	0
67	Homogeneous Epitaxial Growth of N,N′-di(n-butyl)quinacridone Thin Films on Ag(110). Journal of Nanoscience and Nanotechnology, 2010, 10, 7162-7166.	0.9	0
68	Surface Plasmon Polariton Enhancement in Silver Nanowire–Nanoantenna Structure. Plasmonics, 2010, 5, 57-62.	1.8	29
69	Hybrid Plasmonic Waveguide Based on Tapered Dielectric Nanoribbon: Excitation and Focusing. Plasmonics, 2010, 5, 207-212.	1.8	25
70	PLASMONIC FOCUSING BASED ON CdS NANORIBBON. Journal of Nonlinear Optical Physics and Materials, 2010, 19, 729-735.	1.1	0
71	Color-changeable properties of plasmonic waveguides based on Se-doped CdS nanoribbons. Physical Review B, 2010, 82, .	1.1	16
72	Planar Plasmonic Focusing and Optical Transport Using CdS Nanoribbon. ACS Nano, 2010, 4, 75-82.	7.3	55

Хімд Zhu

#	Article	IF	CITATIONS
73	Near-field nanofocusing through a combination of plasmonic Bragg reflector and converging lens. Optics Express, 2010, 18, 14762.	1.7	20
74	Applications of Surface Plasmon Polariton in the Au Nanocircuit. Journal of the Korean Physical Society, 2010, 56, 1725-1728.	0.3	3
75	Focusing surface plasmon polariton trapping of colloidal particles. Applied Physics Letters, 2009, 94, 063306.	1.5	25
76	Optical waveguide behavior of Se-doped and undoped CdS one-dimensional nanostructures using near-field optical microscopy. Science in China Series G: Physics, Mechanics and Astronomy, 2009, 52, 26-30.	0.2	0
77	Color-tuning and switching optical transport through CdS hybrid plasmonic waveguide. Optics Express, 2009, 17, 20327.	1.7	17
78	Selected Peer-Reviewed Articles from ChinaNANO 2007, Beijing, China. Journal of Nanoscience and Nanotechnology, 2009, 9, 677-678.	0.9	0
79	Comparison of the Optical Waveguide Behaviors of Se-Doped and Undoped CdS Nanoribbons by Using Near-Field Optical Microscopy. Journal of Nanoscience and Nanotechnology, 2009, 9, 978-981.	0.9	2
80	Influence of surface-modified TiO2 nanoparticles on fracture behavior of injection molded polypropylene. Frontiers of Materials Science in China, 2008, 2, 9-15.	0.5	4
81	ChinaNANO 2007. Small, 2008, 4, 306-306.	5.2	0
82	Atomic structures of boron-induced protrusion features on Si(100) surfaces. Physical Review B, 2008, 77, .	1.1	10
83	Excitation of dielectric-loaded surface plasmon polariton observed by using near-field optical microscopy. Applied Physics Letters, 2008, 93, 073306.	1.5	25
84	Structure and stimulated emission of ZnSe nanoribbons grown by thermal evaporation. Nanotechnology, 2007, 18, 305705.	1.3	28
85	Large-scale synthesis and optical behaviors of ZnO tetrapods. Applied Physics Letters, 2007, 90, 153116.	1.5	44
86	Micro-cylinder mode in photonic quasicrystal observed by near-field optical microscopy. , 2007, , .		0
87	PHOTOLUMINESCENCE EMITTING PROPERTIES OF SINGLE ZnO NANOWIRE STUDIED BY SCANNING NEAR-FIELD OPTICAL MICROSCOPE. Modern Physics Letters B, 2007, 21, 543-549.	1.0	5
88	Synthesis of Tower-like ZnO Structures and Visible Photoluminescence Origins of Varied-Shaped ZnO Nanostructures. Journal of Physical Chemistry C, 2007, 111, 7655-7660.	1.5	62
89	Color-Changeable Optical Transport through Se-Doped CdS 1D Nanostructures. Nano Letters, 2007, 7, 2970-2975.	4.5	65
90	Spatial mapping on surface light extraction from 2D photonic quasicrystals patterned GaN-based light emitters. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 100-103.	0.8	0

#	Article	IF	CITATIONS
91	Soft Control of Scanning Probe Microscope with High Flexibility. Scanning, 2007, 29, 109-113.	0.7	0
92	Multistable features of boronized interstitial-pentamers on Si(113) surfaces. Surface and Interface Analysis, 2006, 38, 1078-1082.	0.8	0
93	Mesoscopic phases and characteristics of nano-structured interfaces. Surface and Interface Analysis, 2006, 38, 1068-1072.	0.8	1
94	Universal characteristics and function-control of nanostructured materials. Thin Solid Films, 2006, 509, 3-12.	0.8	0
95	Self-Absorption Effect in the Spatial Resolved Spectra of CdS Nano-Ribbon Optical Waveguide Observed by Near-Field Spectroscopy. Optical Review, 2006, 13, 235-238.	1.2	7
96	VISUALIZING Ca2+ SPARKS AND SUBSTRUCTURE OF Ca2+ WAVES BY TOTAL INTERNAL REFLECTION FLUORESCENCE MICROSCOPY (TIRFM). International Journal of Nanoscience, 2006, 05, 709-714.	0.4	0
97	Study on near-field optical imaging mechanism. , 2005, 5635, 7.		0
98	Visualizing substructure of Ca2+waves by total internal reflection fluorescence microscopy. , 2005, ,		2
99	Mesoscopic Relaxation and Elastic Properties of Two Dimensional Magnetic Nano Structured Materials. Journal of Computational and Theoretical Nanoscience, 2005, 2, 277-286.	0.4	1
100	Optical Waveguide through CdS Nanoribbons. Small, 2005, 1, 980-983.	5.2	193
101	High spatial resolution investigation of electroluminescence of InGaN/GaN multiple quantum wells by using scanning near-field optical microscopy and spectroscopy. , 2005, , .		1
102	Highly cited research papers and the evaluation of a research university: A case study: Peking University 1974-2003. Scientometrics, 2004, 60, 237-347.	1.6	16
103	Ge molecular beam epitaxy on Si(113): surface structures, nanowires and nanodots. Surface and Interface Analysis, 2004, 36, 114-118.	0.8	6
104	Mesoscopic phase transition of nanostructured materials: construction of computer experimental systems and synthesis and control of functional properties. Surface and Interface Analysis, 2004, 36, 177-183.	0.8	3
105	<title>Three-dimensional modeling of near-field imaging in subwavelength periodic
structures</title> . , 2002, , .		1
106	Near-Field Optics. , 2000, , .		9
107	<title>Study of whispering-gallery mode of InGaP microdisks using scanning near-field optical microscopy</title> . , 1998, , .		1
108	Laser Induced Light-Force Interaction in the Optical Near-Field Region. Chinese Physics Letters, 1998, 15, 165-167.	1.3	8

#	Article	IF	CITATIONS
109	<title>Near-field spectroscopy of GaN blue light emission diode</title> . , 1998, 3467, 222.		1
110	<title>Progress of near-field optics research: activities in China</title> . , 1998, 3467, 202.		0
111	Ultrasonic resonance regulated near-field scanning optical microscope and laser induced near-field optical-force interaction. Optical Review, 1997, 4, 236-239.	1.2	8
112	Ultrasonic resonance regulated near-field scanning optical microscope and laser induced near-field optical-force interaction. Optical Review, 1997, 4, A236-A239.	1.2	2
113	The effect of ionic radius of metal element (M) on (Pb,M)-1212 superconductors (M= Sr, Ca, Mg, Hg, Cd,) Tj ETQ	q1_1_0.784	1314 rgBT , <mark>○</mark>
114	The growth mechanism and topography of superconducting YBa2Cu3O7â^î^ and BiSrCaCuO-2201 films studied by scanning tunneling microscopy. Physica C: Superconductivity and Its Applications, 1993, 216, 153-159.	0.6	26
115	Effect of time aging on the properties of Ag-doped YBaCuO superconductors. Superconductor Science and Technology, 1993, 6, 715-720.	1.8	7
116	The process of forming 2223 phase from 2212 phase in Bi(Pb)-Sr-Ca-Cu-O System. Solid State Communications, 1991, 78, 609-613.	0.9	40
117	A MODEL FOR MODULATIONS IN Bi2Sr2CanCun+1O2n+6+d RELATED TO AURIVILLIUS OXYGEN. Modern Physics Letters B, 1990, 04, 59-62.	1.0	5
118	Anisotropic properties of single crystal Bi 2 Sr 2 CaCu 2 O 8+δ. Physica C: Superconductivity and Its Applications, 1989, 162-164, 1649-1650.	0.6	3
119	Superconductivity and crystal structure in the Bi-Pb-Sr-Ca-Cu-O system. IEEE Transactions on Magnetics, 1989, 25, 2154-2157.	1.2	8
120	Antiferromagnetic ordering in the high-Tc superconductors (Y1â^'xGdx) Ba2Cu3O7â^'y. Physica C: Superconductivity and Its Applications, 1988, 153-155, 190-191.	0.6	6
121	Antiferromagnetic ordering observed in the high Tc superconductor GdBa2Cu3O7-x. Solid State Communications, 1987, 64, 691-694.	0.9	11