Ji Dong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6679907/publications.pdf

Version: 2024-02-01

394286 552653 3,252 25 19 26 citations h-index g-index papers 26 26 26 6348 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Integrating single-cell datasets with ambiguous batch information by incorporating molecular network features. Briefings in Bioinformatics, 2022, 23, .	3.2	5
2	Heterogeneity in endothelial cells and widespread venous arterialization during early vascular development in mammals. Cell Research, 2022, 32, 333-348.	5.7	30
3	Cell-fate transition and determination analysis of mouse male germ cells throughout development. Nature Communications, 2021, 12, 6839.	5.8	31
4	Single-cell transcriptome analysis reveals cell lineage specification in temporal-spatial patterns in human cortical development. Science Advances, 2020, 6, eaaz2978.	4.7	88
5	Differentiation of transplanted haematopoietic stem cells tracked by single-cell transcriptomic analysis. Nature Cell Biology, 2020, 22, 630-639.	4.6	65
6	Embryonic endothelial evolution towards first hematopoietic stem cells revealed by single-cell transcriptomic and functional analyses. Cell Research, 2020, 30, 376-392.	5.7	89
7	Circulating re-entrant waves promote maturation of hiPSC-derived cardiomyocytes in self-organized tissue ring. Communications Biology, 2020, 3, 122.	2.0	32
8	Dissecting the transcriptome landscape of the human fetal neural retina and retinal pigment epithelium by single-cell RNA-seq analysis. PLoS Biology, 2019, 17, e3000365.	2.6	108
9	Distinct enhancer signatures in the mouse gastrula delineate progressive cell fate continuum during embryo development. Cell Research, 2019, 29, 911-926.	5.7	16
10	Single-Cell Transcriptome Analysis Maps the Developmental Track of the Human Heart. Cell Reports, 2019, 26, 1934-1950.e5.	2.9	355
11	Single-cell analyses identify distinct and intermediate states of zebrafish pancreatic islet development. Journal of Molecular Cell Biology, 2019, 11, 435-447.	1.5	9
12	Single-cell RNA-seq analysis unveils a prevalent epithelial/mesenchymal hybrid state during mouse organogenesis. Genome Biology, 2018, 19, 31.	3.8	153
13	Single-cell DNA methylome sequencing of human preimplantation embryos. Nature Genetics, 2018, 50, 12-19.	9.4	248
14	A single-cell RNA-seq survey of the developmental landscape of the human prefrontal cortex. Nature, 2018, 555, 524-528.	13.7	551
15	Single-cell multiomics sequencing and analyses of human colorectal cancer. Science, 2018, 362, 1060-1063.	6.0	256
16	Single-Cell RNA Sequencing Analysis Reveals Sequential Cell Fate Transition during Human Spermatogenesis. Cell Stem Cell, 2018, 23, 599-614.e4.	5.2	309
17	TGF- \hat{l}^21 Negatively Regulates the Number and Function of Hematopoietic Stem Cells. Stem Cell Reports, 2018, 11, 274-287.	2.3	39
18	Spatial transcriptomic survey of human embryonic cerebral cortex by single-cell RNA-seq analysis. Cell Research, 2018, 28, 730-745.	5.7	179

#	Article	IF	CITATION
19	Single-Cell RNA-Seq Analysis Maps Development of Human Germline Cells and Gonadal Niche Interactions. Cell Stem Cell, 2017, 20, 858-873.e4.	5.2	376
20	In vitro differentiation of human embryonic stem cells into ovarian follicle-like cells. Nature Communications, 2017, 8, 15680.	5. 8	82
21	DNA methylation and chromatin accessibility profiling of mouse and human fetal germ cells. Cell Research, 2017, 27, 165-183.	5.7	102
22	The complete mitochondrial genome of a Chinese rufous horseshoe bat subspecies, Rhinolophus sinicus sinicus (Chiroptera: Rhinolophidae). Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis, 2016, 27, 3301-3302.	0.7	4
23	Repetitive transpositions of mitochondrial DNA sequences to the nucleus during the radiation of horseshoe bats (Rhinolophus, Chiroptera). Gene, 2016, 581, 161-169.	1.0	8
24	Heteroplasmy and Ancient Translocation of Mitochondrial DNA to the Nucleus in the Chinese Horseshoe Bat (Rhinolophus sinicus) Complex. PLoS ONE, 2014, 9, e98035.	1.1	9
25	Introgression of mitochondrial DNA promoted by natural selection in the Japanese pipistrelle bat (Pipistrellus abramus). Genetica, 2014, 142, 483-494.	0.5	4