Qinxing Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6679906/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sustainable Low-Cost Green Electrodes with High Volumetric Capacitance for Aqueous Symmetric Supercapacitors with High Energy Density. ACS Sustainable Chemistry and Engineering, 2016, 4, 1422-1430.	3.2	116
2	Core-shell N-doped active carbon fiber@graphene composites for aqueous symmetric supercapacitors with high-energy and high-power density. Journal of Power Sources, 2016, 317, 133-142.	4.0	79
3	Graphene enhanced anchoring of nanosized Co3O4 particles on carbon fiber cloth as free-standing anode for lithium-ion batteries with superior cycling stability. Electrochimica Acta, 2017, 247, 125-131.	2.6	44
4	Sandwich-like nitrogen-enriched porous carbon/graphene composites as electrodes for aqueous symmetric supercapacitors with high energy density. Electrochimica Acta, 2016, 189, 22-31.	2.6	42
5	In-plane porous Co ₃ O ₄ nanosheet assembled 3D hierarchical clusters grown on stainless steel mesh as binder-free anodes for high performance lithium ion batteries. Journal of Materials Chemistry A, 2018, 6, 8388-8395.	5.2	40
6	Nitrogen-enriched graphene-like carbon architecture with tunable porosity derived from coffee ground as high performance anodes for lithium ion batteries. Applied Surface Science, 2021, 537, 148092.	3.1	38
7	Reed straw derived active carbon/graphene hybrids as sustainable high-performance electrodes for advanced supercapacitors. Journal of Solid State Electrochemistry, 2016, 20, 449-457.	1.2	36
8	Novel nanoarchitectured Zn2SnO4 anchored on porous carbon as high performance anodes for lithium ion batteries. Materials Letters, 2015, 138, 120-123.	1.3	34
9	Polystyrene foam derived nitrogen-enriched porous carbon/graphene composites with high volumetric capacitances for aqueous supercapacitors. Microporous and Mesoporous Materials, 2017, 239, 130-137.	2.2	34
10	High performance aqueous symmetric supercapacitors based on advanced carbon electrodes and hydrophilic poly(vinylidene fluoride) porous separator. Applied Surface Science, 2018, 443, 412-420.	3.1	33
11	A facile fabrication of MnO2/graphene hybrid microspheres with a porous secondary structure for high performance supercapacitors. Journal of Solid State Electrochemistry, 2015, 19, 949-956.	1.2	32
12	EDTA-Co(II) sodium complex derived Co(OH)2/Co3O4/Co nanoparticles embedded in nitrogen-enriched graphitic porous carbon as lithium-ion battery anode with superior cycling stability. Applied Surface Science, 2020, 504, 144515.	3.1	26
13	Graphene functionalized attapulgite/sulfur composite as cathode of lithium–sulfur batteries for energy storage. Microporous and Mesoporous Materials, 2016, 224, 239-244.	2.2	23
14	Nitrogen-enriched graphitic carbon encapsulated Fe3O4/Fe3C/Fe composite derived from EDTA-Fe(III) sodium complex as LiBs anodes with boosted performance. Journal of Electroanalytical Chemistry, 2020, 857, 113749.	1.9	21
15	Structural and Electronic Characterization of Eu2LiSi3, Eu2LiGe3 and EuxSr2â^'xLiGe3 Mixed Crystals. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2006, 632, 1743-1751.	0.6	20
16	Flexible carbon@graphene composite cloth for advanced lithium–sulfur batteries and supercapacitors with enhanced energy storage capability. Journal of Materials Science, 2017, 52, 13478-13489.	1.7	20
17	Supercapacitive behavior of laminar-structured carbon cloth with alternating graphene and hybrid nanofibers: A synergistic effect of graphene-coating and post-oxidization. Applied Surface Science, 2017, 407, 36-43.	3.1	19
18	Nitrogen-enriched flexible porous carbon/graphene composite cloth as free-standing electrodes for high performance aqueous supercapacitors. Journal of Electroanalytical Chemistry, 2017, 801, 57-64.	1.9	19

QINXING XIE

#	Article	IF	CITATIONS
19	A facile fabrication of micro/nano-sized silicon/carbon composite with a honeycomb structure as high-stability anodes for lithium-ion batteries. Journal of Electroanalytical Chemistry, 2021, 884, 115074.	1.9	19
20	Ttâ€Tt (Tt = Si, Ge) Dumbâ€Bell Structures at Different Valence Electron Concentrations: Ln ₂ MgSi ₂ (Ln = La, Ce), Yb ₂ Li _{0.5} Ge ₂ , and Yb _{1.75} Mg _{0.75} Si ₂ . Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2008, 634, 2469-2476.	0.6	16
21	A Bis(1,2-Azaborolyl)yttrium Alkyl Complex: Synthesis, Structure, and Polymerization Study. Organometallics, 2008, 27, 2892-2895.	1.1	16
22	One-pot hydrothermal fabrication and enhanced lithium storage capability of SnO2 nanorods intertangled with carbon nanotubes and graphene nanosheets. Journal of Materials Science, 2018, 53, 9206-9216.	1.7	16
23	EDTA-Fe(III) sodium complex–derived bubble-like nitrogen-enriched highly graphitic carbon nanospheres as anodes with high specific capacity for lithium-ion batteries. Ionics, 2020, 26, 85-94.	1.2	15
24	Facile fabrication of honeycomb-like restacking-inhibited graphene architecture with superior electrochemical performance for energy storage. Materials Letters, 2018, 225, 93-96.	1.3	10
25	Polytypism of LiSr2Ge3 and the Solid Solutions LiSr2SixGe3-x and LiSr2-xEuxGe3 (0 < x < 1). Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2011, 637, 846-858.	0.6	9
26	Wrinkled p-phenylenediamine grafted graphene oxide as reinforcement for polyvinyl butyral anti-corrosive coating. Journal of Materials Science, 2021, 56, 12686-12699.	1.7	8
27	N/O co-enriched amorphous carbon coated graphene with a sandwiched porous architecture as supercapacitor electrodes with high volumetric specific capacitance. Journal of Materials Science: Materials in Electronics, 2019, 30, 20265-20275.	1.1	6
28	A strategic co-assembly of carbon nanotubes and graphene on hierarchical flower-like Sn3O4 clusters aimed to enhance lithium storage capability. Journal of Electroanalytical Chemistry, 2021, 880, 114898.	1.9	6
29	Attapulgite and multiwalled carbon nanotubes co-integrated hierarchical porous polyacrylonitrile membrane as a multifunctional interlayer for lithium-sulfur batteries with enhanced performance. Journal of Electroanalytical Chemistry, 2021, 898, 115629.	1.9	6
30	Heterostructured δ-MnO2/Fe2O3 nanoarrays layer-by-layer assembled on stainless-steel mesh as free-standing anodes for lithium ion batteries towards enhanced performance. Materials Today Communications, 2022, 32, 104034.	0.9	4
31	Microstructure and mechanical properties of Al ₂ O ₃ /MgAl ₂ O ₄ /ZrO ₂ eutectic ceramic prepared with induction zone melting. Materials Research Innovations, 2015, 19, S1-355-S1-358.	1.0	3
32	Influence of graphene coating on supercapacitive behavior of sandwich-like N- and O-enriched porous carbon/graphene composites in aqueous and organic electrolytes. Ionics, 2017, 23, 1499-1507.	1.2	3
33	Composite membrane of poly-guanidine cationic surface for desalination. Water Science and Technology: Water Supply, 0, , .	1.0	3
34	Ball-Milled Silicon with Amorphous Al ₂ O ₃ /C Hybrid Coating Embedded in Graphene/Graphite Nanosheets with a Boosted Lithium Storage Capability. Langmuir, 2022, 38, 8555-8563.	1.6	3
35	Propane dehydrogenation over PtSnMg/Cr ₂ O ₃ ·Al ₂ O ₃ catalysts: effect of the amount of Mg loading. IOP Conference Series: Materials Science and Engineering, 2017, 167, 012053.	0.3	2
36	Crystal structure of sodium strontium monogermanide, NaxSr1–xGe (x = 0.14). Zeitschrift Fur Kristallographie - New Crystal Structures, 2003, 218, 291-292.	0.1	1

QINXING XIE

#	Article	IF	CITATIONS
37	Crystal structure of distrontium lithium magnesium trisilicide, Sr2(LixMg2-x)Si3(x=1). Zeitschrift Fur Kristallographie - New Crystal Structures, 2003, 218, 311-312.	0.1	0
38	Crystal structure of octa(barium, strontium)hexazinc tetracontagermanide, Ba7.56Ge40Sr0.44Zn6. Zeitschrift Fur Kristallographie - New Crystal Structures, 2013, 228, 443-444.	0.1	0
39	Crystal structure of barium germanide, BaGe1.51. Zeitschrift Fur Kristallographie - New Crystal Structures, 2013, 228, 441-442.	0.1	Ο
40	Crystal structure of sodium strontium monogermanide, NaxSr1-xGe(x=0.14). Zeitschrift Fur Kristallographie - New Crystal Structures, 2003, 218, 313-314.	0.1	0
41	Crystal structure of dieuropium and distrontium di(lithium, magnesium) trigermanide, M2LixMg2-x Ge3 (M = Eu, x = 1.16; M = Sr, x = 0.94). Zeitschrift Fur Kristallographie - New Crystal Structures, 2004, 219, 93-94.	0.1	0