
Klaus Richter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6679653/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Heat Shock Response: Life on the Verge of Death. Molecular Cell, 2010, 40, 253-266.	9.7	1,603
2	Hsp90: Chaperoning signal transduction. Journal of Cellular Physiology, 2001, 188, 281-290.	4.1	533
3	The Hsp90 Chaperone Machinery. Journal of Biological Chemistry, 2008, 283, 18473-18477.	3.4	479
4	Dissection of the ATP-induced conformational cycle of the molecular chaperone Hsp90. Nature Structural and Molecular Biology, 2009, 16, 287-293.	8.2	307
5	Staphylocoagulase is a prototype for the mechanism of cofactor-induced zymogen activation. Nature, 2003, 425, 535-539.	27.8	234
6	Asymmetric Activation of the Hsp90 Dimer by Its Cochaperone Aha1. Molecular Cell, 2010, 37, 344-354.	9.7	225
7	The architecture of functional modules in the Hsp90 co-chaperone Sti1/Hop. EMBO Journal, 2012, 31, 1506-1517.	7.8	190
8	Coordinated ATP Hydrolysis by the Hsp90 Dimer. Journal of Biological Chemistry, 2001, 276, 33689-33696.	3.4	173
9	Closely related receptor complexes differ in their ABA selectivity and sensitivity. Plant Journal, 2010, 61, 25-35.	5.7	170
10	Sti1 Is a Non-competitive Inhibitor of the Hsp90 ATPase. Journal of Biological Chemistry, 2003, 278, 10328-10333.	3.4	169
11	The Co-chaperone Sba1 Connects the ATPase Reaction of Hsp90 to the Progression of the Chaperone Cycle. Journal of Molecular Biology, 2004, 342, 1403-1413.	4.2	142
12	The Charged Linker Region Is an Important Regulator of Hsp90 Function. Journal of Biological Chemistry, 2009, 284, 22559-22567.	3.4	138
13	Mixed Hsp90–cochaperone complexes are important for the progression of the reaction cycle. Nature Structural and Molecular Biology, 2011, 18, 61-66.	8.2	133
14	The Prion Curing Agent Guanidinium Chloride Specifically Inhibits ATP Hydrolysis by Hsp104. Journal of Biological Chemistry, 2004, 279, 7378-7383.	3.4	124
15	Conserved Conformational Changes in the ATPase Cycle of Human Hsp90. Journal of Biological Chemistry, 2008, 283, 17757-17765.	3.4	120
16	Analysis of the Regulation of the Molecular Chaperone Hsp26 by Temperature-induced Dissociation. Journal of Biological Chemistry, 2004, 279, 11222-11228.	3.4	118
17	Structural analysis of the interaction between Hsp90 and the tumor suppressor protein p53. Nature Structural and Molecular Biology, 2011, 18, 1086-1093.	8.2	116
18	C-terminal regions of Hsp90 are important for trapping the nucleotide during the ATPase cycle 1 1Edited by R. Huber. Journal of Molecular Biology, 2000, 303, 583-592.	4.2	115

#	Article	IF	CITATIONS
19	Conformational Switching of the Molecular Chaperone Hsp90 via Regulated Phosphorylation. Molecular Cell, 2012, 45, 517-528.	9.7	114
20	AAA+ chaperones and acyldepsipeptides activate the ClpP protease via conformational control. Nature Communications, 2015, 6, 6320.	12.8	110
21	Cpr6 and Cpr7, Two Closely Related Hsp90-associated Immunophilins from Saccharomyces cerevisiae, Differ in Their Functional Properties. Journal of Biological Chemistry, 2000, 275, 34140-34146.	3.4	107
22	Integration of the accelerator Aha1 in the Hsp90 co-chaperone cycle. Nature Structural and Molecular Biology, 2013, 20, 326-331.	8.2	106
23	Identification of a Tissue-Selective Heat Shock Response Regulatory Network. PLoS Genetics, 2013, 9, e1003466.	3.5	100
24	The charged linker of the molecular chaperone Hsp90 modulates domain contacts and biological function. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17881-17886.	7.1	100
25	Energetics by NMR: Site-specific binding in a positively cooperative system. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1847-1852.	7.1	86
26	The Activation Mechanism of Hsp26 does not Require Dissociation of the Oligomer. Journal of Molecular Biology, 2005, 350, 1083-1093.	4.2	81
27	Importance of cycle timing for the function of the molecular chaperone Hsp90. Nature Structural and Molecular Biology, 2016, 23, 1020-1028.	8.2	78
28	Hsp90 regulates the dynamics of its cochaperone Sti1 and the transfer of Hsp70 between modules. Nature Communications, 2015, 6, 6655.	12.8	76
29	NMR Chemical Shift Perturbation Study of the N-Terminal Domain of Hsp90 upon Binding of ADP, AMP-PNP, Geldanamycin, and Radicicol. ChemBioChem, 2003, 4, 870-877.	2.6	71
30	A Multilaboratory Comparison of Calibration Accuracy and the Performance of External References in Analytical Ultracentrifugation. PLoS ONE, 2015, 10, e0126420.	2.5	71
31	Intrinsic Inhibition of the Hsp90 ATPase Activity. Journal of Biological Chemistry, 2006, 281, 11301-11311.	3.4	64
32	N-terminal Residues Regulate the Catalytic Efficiency of the Hsp90 ATPase Cycle. Journal of Biological Chemistry, 2002, 277, 44905-44910.	3.4	62
33	Allosteric Regulation Points Control the Conformational Dynamics of the Molecular Chaperone Hsp90. Journal of Molecular Biology, 2016, 428, 4559-4571.	4.2	59
34	Fibrinogen Substrate Recognition by Staphylocoagulase·(Pro)thrombin Complexes. Journal of Biological Chemistry, 2006, 281, 1179-1187.	3.4	56
35	The Dimer Interface of the Membrane Type 1 Matrix Metalloproteinase Hemopexin Domain. Journal of Biological Chemistry, 2011, 286, 7587-7600.	3.4	52
36	Downregulation of the Hsp90 System Causes Defects in Muscle Cells of Caenorhabditis Elegans. PLoS ONE, 2011, 6, e25485.	2.5	52

#	Article	IF	CITATIONS
37	hsp90: Twist and Fold. Cell, 2006, 127, 251-253.	28.9	51
38	The Non-canonical Hop Protein from Caenorhabditis elegans Exerts Essential Functions and Forms Binary Complexes with Either Hsc70 or Hsp90. Journal of Molecular Biology, 2009, 391, 621-634.	4.2	49
39	Regulation of the Hsp90 system. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 889-897.	4.1	48
40	The alternatively folded state of the antibody CH3 domain. Journal of Molecular Biology, 2001, 309, 1077-1085.	4.2	46
41	Structure and mechanism of the two-component α-helical pore-forming toxin YaxAB. Nature Communications, 2018, 9, 1806.	12.8	46
42	Cns1 Is an Activator of the Ssa1 ATPase Activity. Journal of Biological Chemistry, 2004, 279, 23267-23273.	3.4	45
43	Reversible Inhibitors Arrest ClpP in a Defined Conformational State that Can Be Revoked by ClpX Association. Angewandte Chemie - International Edition, 2015, 54, 15892-15896.	13.8	42
44	Hsp90·Cdc37 Complexes with Protein Kinases Form Cooperatively with Multiple Distinct Interaction Sites. Journal of Biological Chemistry, 2015, 290, 30843-30854.	3.4	39
45	Formation of She2p tetramers is required for mRNA binding, mRNP assembly, and localization. Rna, 2009, 15, 2002-2012.	3.5	37
46	Cdc37 (Cell Division Cycle 37) Restricts Hsp90 (Heat Shock Protein 90) Motility by Interaction with N-terminal and Middle Domain Binding Sites. Journal of Biological Chemistry, 2013, 288, 16032-16042.	3.4	36
47	Chaperone-Interacting TPR Proteins in Caenorhabditis elegans. Journal of Molecular Biology, 2013, 425, 2922-2939.	4.2	35
48	Functions of the Hsp90 chaperone system: lifting client proteins to new heights. International Journal of Biochemistry and Molecular Biology, 2013, 4, 157-65.	0.1	35
49	Subunit Interactions and Cooperativity in the Microtubule-severing AAA ATPase Spastin. Journal of Biological Chemistry, 2012, 287, 26278-26290.	3.4	34
50	Selective Activation of Human Caseinolytic Proteaseâ€P (ClpP). Angewandte Chemie - International Edition, 2018, 57, 14602-14607.	13.8	34
51	Cdc37-Hsp90 Complexes Are Responsive to Nucleotide-induced Conformational Changes and Binding of Further Cofactors. Journal of Biological Chemistry, 2010, 285, 40921-40932.	3.4	33
52	Axin cancer mutants form nanoaggregates to rewire the Wnt signaling network. Nature Structural and Molecular Biology, 2016, 23, 324-332.	8.2	31
53	Monomeric myosin V uses two binding regions for the assembly of stable translocation complexes. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19778-19783.	7.1	30
54	Hop/Sti1 phosphorylation inhibits its coâ€chaperone function. EMBO Reports, 2015, 16, 240-249.	4.5	30

#	Article	IF	CITATIONS
55	The activity of protein phosphatase 5 towards native clients is modulated by the middle- and C-terminal domains of Hsp90. Scientific Reports, 2015, 5, 17058.	3.3	29
56	A methylated lysine is a switch point for conformational communication in the chaperone Hsp90. Nature Communications, 2020, 11, 1219.	12.8	24
57	Hsp90 in non-mammalian metazoan model systems. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 712-721.	4.1	21
58	A Grp on the Hsp90 Mechanism. Molecular Cell, 2007, 28, 177-179.	9.7	20
59	Unique Proline-Rich Domain Regulates the Chaperone Function of AIPL1. Biochemistry, 2013, 52, 2089-2096.	2.5	20
60	A network of genes connects polyglutamine toxicity to ploidy control in yeast. Nature Communications, 2013, 4, 1571.	12.8	19
61	Glucocorticoid receptor complexes form cooperatively with the Hsp90 co-chaperones Pp5 and FKBPs. Scientific Reports, 2020, 10, 10733.	3.3	19
62	The rod-shaped conformation of Starmaker. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2009, 1794, 1616-1624.	2.3	18
63	Artificial Accelerators of the Molecular Chaperone Hsp90 Facilitate Rateâ€Limiting Conformational Transitions. Angewandte Chemie - International Edition, 2014, 53, 12257-12262.	13.8	18
64	Selective activators of protein phosphatase 5 target the auto-inhibitory mechanism. Bioscience Reports, 2015, 35, .	2.4	18
65	PFN2 and NAA80 cooperate to efficiently acetylate the N-terminus of actin. Journal of Biological Chemistry, 2020, 295, 16713-16731.	3.4	18
66	Polyglutamine toxicity in yeast induces metabolic alterations and mitochondrial defects. BMC Genomics, 2015, 16, 662.	2.8	17
67	Modulated Scanning Fluorimetry Can Quickly Assess Thermal Protein Unfolding Reversibility in Microvolume Samples. Molecular Pharmaceutics, 2020, 17, 2638-2647.	4.6	17
68	Protein folding, misfolding and quality control: the role of molecular chaperones. Essays in Biochemistry, 2014, 56, 53-68.	4.7	16
69	Structure-Based Mutagenesis of Phycobiliprotein smURFP for Optoacoustic Imaging. ACS Chemical Biology, 2019, 14, 1896-1903.	3.4	15
70	Hsp90-downregulation influences the heat-shock response, innate immune response and onset of oocyte development in nematodes. PLoS ONE, 2017, 12, e0186386.	2.5	15
71	The Lid Domain of Caenorhabditis elegans Hsc70 Influences ATP Turnover, Cofactor Binding and Protein Folding Activity. PLoS ONE, 2012, 7, e33980.	2.5	14
72	Naturalâ€Productâ€Inspired Aminoepoxybenzoquinones Kill Members of the Gramâ€Negative Pathogen <i>Salmonella</i> by Attenuating Cellular Stress Response. Angewandte Chemie - International Edition, 2016, 55, 14852-14857.	13.8	14

#	Article	IF	CITATIONS
73	Closing In on the Hsp90 Chaperone-Client Relationship. Structure, 2011, 19, 445-446.	3.3	12
74	The Balanced Regulation of Hsc70 by DNJ-13 and UNC-23 Is Required for Muscle Functionality. Journal of Biological Chemistry, 2014, 289, 25250-25261.	3.4	12
75	Ligand-Induced Formation of a Transient Tryptophan Synthase Complex with αββ Subunit Stoichiometry. Biochemistry, 2010, 49, 10842-10853.	2.5	10
76	Nematode Sgt1-Homologue D1054.3 Binds Open and Closed Conformations of Hsp90 via Distinct Binding Sites. Biochemistry, 2014, 53, 2505-2514.	2.5	9
77	Construction and evaluation of yeast expression networks by database-guided predictions. Microbial Cell, 2016, 3, 236-247.	3.2	7
78	Nucleotide-Free sB-Raf is Preferentially Bound by Hsp90 and Cdc37 In Vitro. Journal of Molecular Biology, 2016, 428, 4185-4196.	4.2	6
79	Glucocorticoid resistance conferring mutation in the C-terminus of GR alters the receptor conformational dynamics. Scientific Reports, 2021, 11, 12515.	3.3	5
80	head-bent resistant Hsc70 variants show reduced Hsp40 affinity and altered protein folding activity. Scientific Reports, 2019, 9, 11955.	3.3	4
81	HSP-90/kinase complexes are stabilized by the large PPIase FKB-6. Scientific Reports, 2021, 11, 12347.	3.3	4
82	Structure of GTP cyclohydrolase I from <i>Listeria monocytogenes</i> , a potential anti-infective drug target. Acta Crystallographica Section F, Structural Biology Communications, 2019, 75, 586-592.	0.8	4
83	Binding of the HSF-1 DNA-binding domain to multimeric C. elegans consensus HSEs is guided by cooperative interactions. Scientific Reports, 2022, 12, .	3.3	4
84	Selektive Aktivierung der humanen caseinolytischen Proteaseâ€P (ClpP). Angewandte Chemie, 2018, 130, 14811-14816.	2.0	3
85	hsp-90 and unc-45 depletion induce characteristic transcriptional signatures in coexpression cliques of C. elegans. Scientific Reports, 2021, 11, 12852.	3.3	2
86	Genome-wide analysis of yeast expression data based on a priori generated co-regulation cliques. Microbial Cell, 2019, 6, 160-176.	3.2	2
87	Nematode CDC-37 and DNJ-13 form complexes and can interact with HSP-90. Scientific Reports, 2021, 11, 21346.	3.3	1
88	Cooperative Interactions in the Microtubule-Severing AAA ATPase Spastin. Biophysical Journal, 2012, 102, 700a.	0.5	0
89	daf-41/p23: A Small Protein Heating Up Lifespan Regulation. PLoS Genetics, 2015, 11, e1005188.	3.5	0