Wei Cao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6679632/publications.pdf

Version: 2024-02-01

230014 340414 7,192 41 27 39 h-index citations g-index papers 44 44 44 11277 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Pathogenic tau accelerates aging-associated activation of transposable elements in the mouse central nervous system. Progress in Neurobiology, 2022, 208, 102181.	2.8	32
2	Concerted type I interferon signaling in microglia and neural cells promotes memory impairment associated with amyloid \hat{I}^2 plaques. Immunity, 2022, 55, 879-894.e6.	6.6	64
3	Concerted cellular responses to type I interferon propel memory impairment associated with amyloid \hat{l}^2 plaques Alzheimer's and Dementia, 2021, 17 Suppl 3, e057524.	0.4	O
4	Antiviral Immune Response in Alzheimer's Disease: Connecting the Dots. Frontiers in Neuroscience, 2020, 14, 577744.	1.4	1
5	Type I interferon response drives neuroinflammation and synapse loss in Alzheimer disease. Journal of Clinical Investigation, 2020, 130, 1912-1930.	3.9	268
6	INCREASED C3 IN THE AGING BRAIN PROMOTES INFLAMMATORY TRANSITION IN ENDOTHELIAL CELLS. Innovation in Aging, 2019, 3, S840-S840.	0.0	0
7	TYPE I INTERFERON-MEDIATED NEUROINFLAMMATORY PROGRAM AND SYNAPSE LOSS IN ALZHEIMER'S DISEASE. Innovation in Aging, 2019, 3, S92-S92.	0.0	O
8	Peripheral immune system in aging and Alzheimer's disease. Molecular Neurodegeneration, 2018, 13, 51.	4.4	143
9	A TLR9-dependent checkpoint governs B cell responses to DNA-containing antigens. Journal of Clinical Investigation, 2017, 127, 1651-1663.	3.9	75
10	Predominant Role of Plasmacytoid Dendritic Cells in Stimulating Systemic Autoimmunity. Frontiers in Immunology, 2015, 6, 526.	2.2	31
11	Neutrophils Regulate Humoral Autoimmunity by Restricting Interferon- \hat{I}^3 Production via the Generation of Reactive Oxygen Species. Cell Reports, 2015, 12, 1120-1132.	2.9	27
12	Regulation of T-cell activation and migration by the kinase TBK1 during neuroinflammation. Nature Communications, 2015, 6, 6074.	5.8	87
13	Human Pentraxins Bind to Misfolded Proteins and Inhibit Production of Type I Interferon Induced by Nucleic Acid-Containing Amyloid. Journal of Clinical & Cellular Immunology, 2015, 06, .	1.5	2
14	Pivotal Functions of Plasmacytoid Dendritic Cells in Systemic Autoimmune Pathogenesis. Journal of Clinical & Cellular Immunology, 2014, 05, 212.	1.5	14
15	Fueling autoimmunity: type I interferon in autoimmune diseases. Expert Review of Clinical Immunology, 2013, 9, 201-210.	1.3	49
16	Rapid Generation of Amyloid from Native Proteins In vitro . Journal of Visualized Experiments, 2013, , 50869.	0.2	6
17	Methylated BSA Mimics Amyloid-Related Proteins and Triggers Inflammation. PLoS ONE, 2013, 8, e63214.	1.1	4
18	Nucleic acid-containing amyloid fibrils potently induce type I interferon and stimulate systemic autoimmunity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14550-14555.	3.3	48

#	Article	IF	CITATIONS
19	Binding with Nucleic Acids or Glycosaminoglycans Converts Soluble Protein Oligomers to Amyloid. Journal of Biological Chemistry, 2012, 287, 736-747.	1.6	49
20	Reduced Graft-versus-Host Disease in C3-Deficient Mice Is Associated with Decreased Donor Th1/Th17 Differentiation. Biology of Blood and Marrow Transplantation, 2012, 18, 1174-1181.	2.0	30
21	PACSIN1 regulates the TLR7/9â€mediated type I interferon response in plasmacytoid dendritic cells. European Journal of Immunology, 2012, 42, 573-579.	1.6	36
22	CD2AP/SHIP1 Complex Positively Regulates Plasmacytoid Dendritic Cell Receptor Signaling by Inhibiting the E3 Ubiquitin Ligase Cbl. Journal of Immunology, 2012, 189, 786-792.	0.4	39
23	Signaling and ligand interaction of ILT7: receptorâ€mediated regulatory mechanisms for plasmacytoid dendritic cells. Immunological Reviews, 2010, 234, 163-176.	2.8	82
24	Thymic Stromal Lymphopoietin-Activated Plasmacytoid Dendritic Cells Induce the Generation of FOXP3+ Regulatory T Cells in Human Thymus. Journal of Immunology, 2010, 184, 2999-3007.	0.4	181
25	Regulation of TLR7/9 responses in plasmacytoid dendritic cells by BST2 and ILT7 receptor interaction. Journal of Experimental Medicine, 2009, 206, 1603-1614.	4.2	277
26	Molecular Characterization of Human Plasmacytoid Dendritic Cells. Journal of Clinical Immunology, 2009, 29, 257-264.	2.0	34
27	Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nature Reviews Immunology, 2008, 8, 594-606.	10.6	1,025
28	Functional Consequences of Interactions between Human NKR-P1A and Its Ligand LLT1 Expressed on Activated Dendritic Cells and B Cells. Journal of Immunology, 2008, 180, 6508-6517.	0.4	157
29	BDCA2/FcεRIγ Complex Signals through a Novel BCR-Like Pathway in Human Plasmacytoid Dendritic Cells. PLoS Biology, 2007, 5, e248.	2.6	148
30	Innate immune functions of plasmacytoid dendritic cells. Current Opinion in Immunology, 2007, 19, 24-30.	2.4	122
31	Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature, 2007, 449, 564-569.	13.7	1,684
32	Specialization, kinetics, and repertoire of type 1 interferon responses by human plasmacytoid predendritic cells. Blood, 2006, 107, 2423-2431.	0.6	248
33	Human plasmacytoid predendritic cells activate NK cells through glucocorticoid-induced tumor necrosis factor receptor-ligand (GITRL). Blood, 2006, 107, 3617-3623.	0.6	132
34	Opn: key regulator of pDC interferon production. Nature Immunology, 2006, 7, 441-443.	7.0	20
35	Plasmacytoid dendritic cell–specific receptor ILT7–FcεRlγ inhibits Toll-like receptor–induced interferon production. Journal of Experimental Medicine, 2006, 203, 1399-1405.	4.2	220
36	Hassall's corpuscles instruct dendritic cells to induce CD4+CD25+ regulatory T cells in human thymus. Nature, 2005, 436, 1181-1185.	13.7	682

#	Article	IF	CITATIONS
37	TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand. Journal of Experimental Medicine, 2005, 202, 1213-1223.	4.2	952
38	Differences in Affinity of Binding of Lymphocytic Choriomeningitis Virus Strains to the Cellular Receptor α-Dystroglycan Correlate with Viral Tropism and Disease Kinetics. Journal of Virology, 2001, 75, 448-457.	1.5	152
39	Viral Persistent Infection Affects both Transcriptional and Posttranscriptional Regulation of Neuron-Specific Molecule GAP43. Virology, 1997, 230, 147-154.	1.1	19
40	Specific Targeting of ISP6 to Mitochondria Is Mediated by Sequences Other Than Its Amino Terminus. Biochemical and Biophysical Research Communications, 1996, 224, 457-461.	1.0	9
41	Biogenesis of ISP6, a Small Carboxyl-terminal Anchored Protein of the Receptor Complex of the Mitochondrial Outer Membrane. Journal of Biological Chemistry, 1995, 270, 5674-5679.	1.6	30