Seong Min Kang

List of Publications by Citations

Source: https://exaly.com/author-pdf/6679598/seong-min-kang-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

40 2,989 18 46 g-index

46 g-index

46 ext. papers ext. citations 8.8 avg, IF L-index

#	Paper	IF	Citations
40	Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide. <i>Journal of the American Chemical Society</i> , 2015 , 137, 8696-9	16.4	1751
39	Hysteresis-free low-temperature-processed planar perovskite solar cells with 19.1% efficiency. <i>Energy and Environmental Science</i> , 2016 , 9, 2262-2266	35.4	232
38	Moth-Eye TiO2 Layer for Improving Light Harvesting Efficiency in Perovskite Solar Cells. <i>Small</i> , 2016 , 12, 2443-9	11	115
37	Enhanced skin adhesive patch with modulus-tunable composite micropillars. <i>Advanced Healthcare Materials</i> , 2013 , 2, 109-13	10.1	107
36	Robust superomniphobic surfaces with mushroom-like micropillar arrays. <i>Soft Matter</i> , 2012 , 8, 8563	3.6	105
35	Thermodynamic regulation of CH3NH3PbI3 crystal growth and its effect on photovoltaic performance of perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 19901-19906	13	78
34	Directional oil sliding surfaces with hierarchical anisotropic groove microstructures. <i>Advanced Materials</i> , 2013 , 25, 5756-61	24	67
33	Opto-electronic properties of TiO2 nanohelices with embedded HC(NH2)2PbI3 perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 9179-9186	13	60
32	Remote Manipulation of Droplets on a Flexible Magnetically Responsive Film. <i>Scientific Reports</i> , 2015 , 5, 17843	4.9	57
31	Water-repellent perovskite solar cell. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 20017-20021	13	55
30	Replication of flexible polymer membranes with geometry-controllable nano-apertures via a hierarchical mould-based dewetting. <i>Nature Communications</i> , 2014 , 5, 3137	17.4	47
29	Tunable Multimodal Drop Bouncing Dynamics and Anti-Icing Performance of a Magnetically Responsive Hair Array. <i>ACS Nano</i> , 2018 , 12, 10693-10702	16.7	47
28	Facile fabrication of three-dimensional TiO 2 structures for highly efficient perovskite solar cells. <i>Nano Energy</i> , 2016 , 22, 499-506	17.1	34
27	Multifunctional Moth-Eye TiO/PDMS Pads with High Transmittance and UV Filtering. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 44038-44044	9.5	34
26	3D tissue formation by stacking detachable cell sheets formed on nanofiber mesh. <i>Biofabrication</i> , 2017 , 9, 015029	10.5	28
25	Bio-inspired adhesive systems for next-generation green manufacturing. <i>International Journal of Precision Engineering and Manufacturing - Green Technology</i> , 2014 , 1, 347-351	3.8	26
24	Bioinspired design and fabrication of green-environmental dry adhesive with robust wide-tip shape. <i>International Journal of Precision Engineering and Manufacturing - Green Technology</i> , 2016 , 3, 189-192	3.8	25

(2021-2019)

23	Moth-eye Structured Polydimethylsiloxane Films for High-Efficiency Perovskite Solar Cells. <i>Nano-Micro Letters</i> , 2019 , 11, 53	19.5	24
22	Directional Clustering of Slanted Nanopillars by Elastocapillarity. <i>Small</i> , 2016 , 12, 3764-9	11	13
21	Role of wide tip of mushroom-like micropillar arrays to make the Cassie state on superrepellent surfaces. <i>RSC Advances</i> , 2016 , 6, 74670-74674	3.7	13
20	Selective Liquid Sliding Surfaces with Springtail-Inspired Concave Mushroom-Like Micropillar Arrays. <i>Small</i> , 2020 , 16, e1904612	11	12
19	Optimization of Shapes and Sizes of Moth-Eye-Inspired Structures for the Enhancement of Their Antireflective Properties. <i>Polymers</i> , 2020 , 12,	4.5	9
18	Enhanced Shear Adhesion by Mechanical Interlocking of Dual-Scaled Elastomeric Micropillars With Embedded Silica Particles. <i>Macromolecular Reaction Engineering</i> , 2013 , 7, 616-623	1.5	9
17	Repeated shape recovery of clustered nanopillars by mechanical pulling. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 9608-9612	7.1	8
16	Partial wrinkle generation for switchable attachment and high adhesion hysteresis. <i>International Journal of Precision Engineering and Manufacturing</i> , 2017 , 18, 133-137	1.7	5
15	Enhanced Directional Adhesion Behavior of Mushroom-Shaped Microline Arrays. <i>International Journal of Precision Engineering and Manufacturing - Green Technology</i> , 2020 , 7, 239-245	3.8	4
14	Reliable and Robust Fabrication Rules for Springtail-Inspired Superomniphobic Surfaces. <i>ACS Applied Materials & Applied & App</i>	9.5	4
13	Self-Assembled Artificial Nanocilia Actuators Advanced Materials, 2022, e2200185	24	4
12	One step fabrication of polymeric ratchet structures of diverse tilting angles. <i>RSC Advances</i> , 2016 , 6, 41313-41316	3.7	3
11	Robust fabrication of double-ring mushroom structure for reliable omniphobic surfaces. <i>Surfaces and Interfaces</i> , 2022 , 29, 101778	4.1	1
10	Capillary-Induced Clustering of Thermoresponsive Micropillars. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 58201-58208	9.5	1
9	Reliable Replication Molding Process for Robust Mushroom-Shaped Microstructures. <i>Journal of the Korean Society for Precision Engineering</i> , 2020 , 37, 855-860	0.3	1
8	Bioinspired Omniphobic Microchamber Structure. <i>Advanced Materials Interfaces</i> , 2021 , 8, 2100027	4.6	1
7	Bioinspired liquid-repelling sealing films for flexible perovskite solar cells. <i>Materials Today Energy</i> , 2021 , 20, 100622	7	1
6	Analysis of optical and wetting properties of a biomimetic anti-reflective surface for practical application. <i>Journal of Mechanical Science and Technology</i> , 2021 , 35, 3559-3567	1.6	1

5	Perovskite Solar Cells: Moth-Eye TiO2 Layer for Improving Light Harvesting Efficiency in Perovskite Solar Cells (Small 18/2016). <i>Small</i> , 2016 , 12, 2530-2530	11	1
4	Controlling the directional sliding velocity of a liquid through an omniphobic nano-bump surface. <i>Applied Surface Science</i> , 2022 , 571, 151404	6.7	1
3	Clustering Transition in Thermo-Responsive Micropillars. Small Structures, 2200023	8.7	0
2	On the nature of wetting transition on high-aspect-ratio pNIPAAm micropillar structures. <i>Surfaces and Interfaces</i> , 2022 , 31, 102062	4.1	O
1	Directional amplification of luminance and formation of complex structures by using reflective Janus-faced prism array. <i>Macromolecular Research</i> , 2017 , 25, 108-111	1.9	