Andre Nussenzweig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6679546/publications.pdf

Version: 2024-02-01

45 papers

8,065 citations

218677 26 h-index 243625 44 g-index

48 all docs

48 docs citations

48 times ranked

9793 citing authors

#	Article	IF	CITATIONS
1	Genomic Instability in Mice Lacking Histone H2AX. Science, 2002, 296, 922-927.	12.6	1,263
2	Endogenous DNA Damage as a Source of Genomic Instability in Cancer. Cell, 2017, 168, 644-656.	28.9	972
3	H2AX: the histone guardian of the genome. DNA Repair, 2004, 3, 959-967.	2.8	842
4	H2AX Haploinsufficiency Modifies Genomic Stability and Tumor Susceptibility. Cell, 2003, 114, 371-383.	28.9	523
5	DNA repair protein Ku80 suppresses chromosomal aberrations and malignant transformation. Nature, 2000, 404, 510-514.	27.8	514
6	AID is required to initiate Nbs1/ \hat{I}^3 -H2AX focus formation and mutations at sites of class switching. Nature, 2001, 414, 660-665.	27.8	459
7	Identification of Early Replicating Fragile Sites that Contribute to Genome Instability. Cell, 2013, 152, 620-632.	28.9	364
8	Genome Organization Drives Chromosome Fragility. Cell, 2017, 170, 507-521.e18.	28.9	311
9	53BP1 Mediates Productive and Mutagenic DNA Repair through Distinct Phosphoprotein Interactions. Cell, 2013, 153, 1266-1280.	28.9	292
10	Origin of Chromosomal Translocations in Lymphoid Cancer. Cell, 2010, 141, 27-38.	28.9	269
11	DNA Breaks and End Resection Measured Genome-wide by End Sequencing. Molecular Cell, 2016, 63, 898-911.	9.7	206
12	DNA-damage-induced differentiation of leukaemic cells as an anti-cancer barrier. Nature, 2014, 514, 107-111.	27.8	174
13	ATM Prevents the Persistence and Propagation of Chromosome Breaks in Lymphocytes. Cell, 2007, 130, 63-75.	28.9	173
14	A Backup DNA Repair Pathway Moves to the Forefront. Cell, 2007, 131, 223-225.	28.9	173
15	Dual Roles of Poly(dA:dT) Tracts in Replication Initiation and Fork Collapse. Cell, 2018, 174, 1127-1142.e19.	28.9	167
16	Topoisomerase II-Induced Chromosome Breakage and Translocation Is Determined by Chromosome Architecture and Transcriptional Activity. Molecular Cell, 2019, 75, 252-266.e8.	9.7	145
17	PTIP Promotes Chromatin Changes Critical for Immunoglobulin Class Switch Recombination. Science, 2010, 329, 917-923.	12.6	137
18	Neuronal enhancers are hotspots for DNA single-strand break repair. Nature, 2021, 593, 440-444.	27.8	126

#	Article	IF	CITATIONS
19	CtIP-mediated resection is essential for viability and can operate independently of BRCA1. Journal of Experimental Medicine, 2014, 211, 1027-1036.	8.5	108
20	Repeat expansions confer WRN dependence in microsatellite-unstable cancers. Nature, 2020, 586, 292-298.	27.8	95
21	ATR inhibition potentiates ionizing radiationâ€induced interferon response via cytosolic nucleic acidâ€sensing pathways. EMBO Journal, 2020, 39, e104036.	7.8	87
22	53BP1 Enforces Distinct Pre- and Post-resection Blocks on Homologous Recombination. Molecular Cell, 2020, 77, 26-38.e7.	9.7	85
23	ATM and PRDM9 regulate SPO11-bound recombination intermediates during meiosis. Nature Communications, 2020, 11, 857.	12.8	81
24	BRCA1 Haploinsufficiency Is Masked by RNF168-Mediated Chromatin Ubiquitylation. Molecular Cell, 2019, 73, 1267-1281.e7.	9.7	78
25	Secondary V(D)J recombination in B-1 cells. Nature, 1999, 397, 355-359.	27.8	63
26	RNA: a double-edged sword in genome maintenance. Nature Reviews Genetics, 2020, 21, 651-670.	16.3	37
27	The threat of programmed DNA damage to neuronal genome integrity and plasticity. Nature Genetics, 2022, 54, 115-120.	21.4	35
28	END-seq: An Unbiased, High-Resolution, and Genome-Wide Approach to Map DNA Double-Strand Breaks and Resection in Human Cells. Methods in Molecular Biology, 2021, 2153, 9-31.	0.9	30
29	Dual histone methyl reader ZCWPW1 facilitates repair of meiotic double strand breaks in male mice. ELife, 2020, 9, .	6.0	30
30	Role of 53BP1 in end protection and DNA synthesis at DNA breaks. Genes and Development, 2021, 35, 1356-1367.	5.9	28
31	Ectopic expression of RNF168 and 53BP1 increases mutagenic but not physiological non-homologous end joining. Nucleic Acids Research, 2015, 43, 4950-4961.	14.5	26
32	Suppressing proteasome mediated processing of topoisomerase II DNA-protein complexes preserves genome integrity. ELife, 2020, 9, .	6.0	26
33	Roles for histone H3K4 methyltransferase activities during immunoglobulin class-switch recombination. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2012, 1819, 733-738.	1.9	24
34	Chimeric IgH-TCRα/δ translocations in T lymphocytes mediated by RAG. Cell Cycle, 2009, 8, 2408-2412.	2.6	18
35	Causes and Consequences of the DNA Damage Response. Cell Cycle, 2007, 6, 2339-2340.	2.6	17
36	Mechanism for Synthetic Lethality in BRCA-Deficient Cancers: No Longer Lagging Behind. Molecular Cell, 2018, 71, 877-878.	9.7	16

#	Article	IF	Citations
37	The dystonia gene THAP1 controls DNA double-strand break repair choice. Molecular Cell, 2021, 81, 2611-2624.e10.	9.7	16
38	The WRN helicase: resolving a new target in microsatellite unstable cancers. Current Opinion in Genetics and Development, 2021, 71, 34-38.	3.3	15
39	Replication initiation and genome instability: a crossroads for DNA and RNA synthesis. Cellular and Molecular Life Sciences, 2014, 71, 4545-4559.	5. 4	13
40	Immature Thymocytes Undergoing Receptor Rearrangements Are Resistant to an Atm-Dependent Death Pathway Activated in Mature T Cells by Double-Stranded DNA Breaks. Journal of Experimental Medicine, 2000, 192, 891-898.	8.5	12
41	Intra-Vκ Cluster Recombination Shapes the Ig Kappa Locus Repertoire. Cell Reports, 2019, 29, 4471-4481.e6.	6.4	9
42	Tumor promoting role of the DNA damage response. Cell Cycle, 2014, 13, 2807-2808.	2.6	2
43	Collateral DNA Damage Produced by Genome-Editing Drones: Exception or Rule?. Molecular Cell, 2015, 58, 565-567.	9.7	1
44	Burning bridges in cancer genomes. Science, 2020, 368, 240-241.	12.6	1
45	Histone H2AX functions in hypoxiaâ€driven neovascularisation. FASEB Journal, 2007, 21, A14.	0.5	O