Jason M Uslaner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6679479/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The PET tracer [¹¹ C]MK-6884 quantifies M4 muscarinic receptor in rhesus monkeys and patients with Alzheimer's disease. Science Translational Medicine, 2022, 14, eabg3684.	12.4	10
2	Effects of a novel M4 muscarinic positive allosteric modulator on behavior and cognitive deficits relevant to Alzheimer's disease and schizophrenia in rhesus monkey. Neuropharmacology, 2021, 197, 108754.	4.1	6
3	Activators of α7 nAChR as Potential Therapeutics for Cognitive Impairment. Current Topics in Behavioral Neurosciences, 2020, 45, 209-245.	1.7	4
4	Discovery of [¹¹ C]MK-6884: A Positron Emission Tomography (PET) Imaging Agent for the Study of M4Muscarinic Receptor Positive Allosteric Modulators (PAMs) in Neurodegenerative Diseases. Journal of Medicinal Chemistry, 2020, 63, 2411-2425.	6.4	30
5	The Discovery of Suvorexant: Lessons Learned That Can Be Applied to Other CNS Drug Development Efforts. ACS Pharmacology and Translational Science, 2020, 3, 161-168.	4.9	7
6	Discovery of 4-arylquinoline-2-carboxamides, highly potent and selective class of mGluR2 negative allosteric modulators: From HTS to activity in animal models. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127066.	2.2	3
7	Pharmacological Characterization of the Novel and Selective <i>α</i> 7 Nicotinic Acetylcholine Receptor–Positive Allosteric Modulator BNC375. Journal of Pharmacology and Experimental Therapeutics, 2020, 373, 311-324.	2.5	9
8	A Novel Biomarker of Neuronal Glutamate Metabolism in Nonhuman Primates Using Localized 1H-Magnetic Resonance Spectroscopy: Development and Effects of BNC375, an α7 Nicotinic Acetylcholine Receptor Positive Allosteric Modulator. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2020, , .	1.5	0
9	Discovery, Optimization, and Biological Characterization of 2,3,6â€Trisubstituted Pyridineâ€Containing M ₄ Positive Allosteric Modulators. ChemMedChem, 2019, 14, 943-951.	3.2	16
10	Indole acids as a novel PDE2 inhibitor chemotype that demonstrate pro-cognitive activity in multiple species. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 1122-1126.	2.2	1
11	Aging African green monkeys manifest transcriptional, pathological, and cognitive hallmarks of human Alzheimer's disease. Neurobiology of Aging, 2018, 64, 92-106.	3.1	37
12	Preclinical to Human Translational Pharmacology of the Novel M ₁ Positive Allosteric Modulator MK-7622. Journal of Pharmacology and Experimental Therapeutics, 2018, 365, 556-566.	2.5	32
13	Pharmacological validation of a novel nonhuman primate measure of thermal responsivity with utility for predicting analgesic effects. Journal of Pain Research, 2018, Volume 11, 735-741.	2.0	9
14	Structure-Guided Design and Procognitive Assessment of a Potent and Selective Phosphodiesterase 2A Inhibitor. ACS Medicinal Chemistry Letters, 2018, 9, 815-820.	2.8	8
15	The dual orexin receptor antagonist, DORAâ€22, lowers histamine levels in the lateral hypothalamus and prefrontal cortex without lowering hippocampal acetylcholine. Journal of Neurochemistry, 2017, 142, 204-214.	3.9	7
16	Inhibition of Orexin Signaling Promotes Sleep Yet Preserves Salient Arousability in Monkeys. Sleep, 2016, 39, 603-612.	1.1	35
17	Behavioral and qEEG effects of the PDE10A inhibitor THPP-1 in a novel rhesus model of antipsychotic activity. Psychopharmacology, 2016, 233, 2441-2450.	3.1	2
18	Optimization of Novel Aza-benzimidazolone mGluR2 PAMs with Respect to LLE and PK Properties and Mitigation of CYP TDL ACS Medicinal Chemistry Letters, 2016, 7, 312-317.	2.8	8

JASON M USLANER

#	Article	IF	CITATIONS
19	Discovery of pyrazolopyrimidine phosphodiesterase 10A inhibitors for the treatment of schizophrenia. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 126-132.	2.2	18
20	Discovery of 5-aryl-1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-ones as positive allosteric modulators of metabotropic glutamate subtype-2 (mGlu2) receptors with efficacy in a preclinical model of psychosis. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 1260-1264.	2.2	8
21	The PDE10A inhibitor MP-10 and haloperidol produce distinct gene expression profiles in the striatum and influence cataleptic behavior in rodents. Neuropharmacology, 2015, 99, 256-263.	4.1	17
22	The selective positive allosteric M1 muscarinic receptor modulator PQCA attenuates learning and memory deficits in the Tg2576 Alzheimer's disease mouse model. Behavioural Brain Research, 2015, 287, 96-99.	2.2	39
23	Discovery and Optimization of a Series of Pyrimidine-Based Phosphodiesterase 10A (PDE10A) Inhibitors through Fragment Screening, Structure-Based Design, and Parallel Synthesis. Journal of Medicinal Chemistry, 2015, 58, 7888-7894.	6.4	48
24	The M1 Muscarinic Positive Allosteric Modulator PQCA Improves Performance on Translatable Tests of Memory and Attention in Rhesus Monkeys. Journal of Pharmacology and Experimental Therapeutics, 2015, 355, 442-450.	2.5	62
25	Improved cognition without adverse effects: novel M1 muscarinic potentiator compares favorably to donepezil and xanomeline in rhesus monkey. Psychopharmacology, 2015, 232, 1859-1866.	3.1	48
26	A New Class of Hypnotic Compounds for the Treatment of Insomnia: The Dual Orexin Receptor Antagonists. , 2015, , 323-338.		2
27	Orexin receptor antagonist-induced sleep does not impair the ability to wake in response to emotionally salient acoustic stimuli in dogs. Frontiers in Behavioral Neuroscience, 2014, 8, 182.	2.0	34
28	Differential sleep-promoting effects of dual orexin receptor antagonists and GABAAreceptor modulators. BMC Neuroscience, 2014, 15, 109.	1.9	37
29	The relationship between glycine transporter 1 occupancy and the effects of the glycine transporter 1 inhibitor RG1678 or ORG25935 on object retrieval performance in scopolamine impaired rhesus monkey. Psychopharmacology, 2014, 231, 511-519.	3.1	27
30	Selective orexin 2 receptor antagonism blocks cue-induced reinstatement, but not nicotine self-administration or nicotine-induced reinstatement. Behavioural Brain Research, 2014, 269, 61-65.	2.2	36
31	Mechanism based neurotoxicity of mGlu5 positive allosteric modulators – Development challenges for a promising novel antipsychotic target. Neuropharmacology, 2014, 82, 161-173.	4.1	76
32	The muscarinic M1 receptor positive allosteric modulator PQCA improves cognitive measures in rat, cynomolgus macaque, and rhesus macaque. Psychopharmacology, 2013, 225, 21-30.	3.1	63
33	The duration of sleep promoting efficacy by dual orexin receptor antagonists is dependent upon receptor occupancy threshold. BMC Neuroscience, 2013, 14, 90.	1.9	79
34	The nicotinic α7 receptor agonist GTS-21 improves cognitive performance inÂketamine impaired rhesus monkeys. Neuropharmacology, 2013, 64, 191-196.	4.1	28
35	The novel phosphodiesterase 10A inhibitor THPP-1 has antipsychotic-like effects in rat and improves cognition in rat and rhesus monkey. Neuropharmacology, 2013, 64, 215-223.	4.1	77
36	Orexin Receptor Antagonists Differ from Standard Sleep Drugs by Promoting Sleep at Doses That Do Not Disrupt Cognition. Science Translational Medicine, 2013, 5, 179ra44.	12.4	79

JASON M USLANER

#	Article	IF	CITATIONS
37	Dual orexin receptor antagonists show distinct effects on locomotor performance, ethanol interaction and sleep architecture relative to gamma-aminobutyric acid-A receptor modulators. Frontiers in Neuroscience, 2013, 7, 254.	2.8	30
38	Differential effects of the mGluR5 positive allosteric modulator CDPPB in the cortex and striatum following repeated administration. Neuropharmacology, 2012, 62, 1453-1460.	4.1	58
39	T-type calcium channel antagonism produces antipsychotic-like effects and reduces stimulant-induced glutamate release in the nucleus accumbens of rats. Neuropharmacology, 2012, 62, 1413-1421.	4.1	31
40	Discovery of tetrahydropyridopyrimidine phosphodiesterase 10A inhibitors for the treatment of schizophrenia. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 5903-5908.	2.2	31
41	The mCluR7 allosteric agonist AMN082 produces antidepressant-like effects by modulating glutamatergic signaling. Pharmacology Biochemistry and Behavior, 2012, 101, 35-40.	2.9	52
42	MK-801 produces a deficit in sucrose preference that is reversed by clozapine, d-serine, and the metabotropic glutamate 5 receptor positive allosteric modulator CDPPB: Relevance to negative symptoms associated with schizophrenia?. Pharmacology Biochemistry and Behavior, 2010, 95, 223-229.	2.9	68
43	T-Type Calcium Channel Antagonism Decreases Motivation for Nicotine and Blocks Nicotine- and Cue-Induced Reinstatement for a Response Previously Reinforced with Nicotine. Biological Psychiatry, 2010, 68, 712-718.	1.3	15
44	Inhibition of glycine transporter 1 attenuates nicotine- but not food-induced cue-potentiated reinstatement for a response previously paired with sucrose. Behavioural Brain Research, 2010, 207, 37-43.	2.2	10
45	The Behavioral and Neurochemical Effects of a Novel d-Amino Acid Oxidase Inhibitor Compound 8 [4 <i>H</i> -Thieno [3,2- <i>b</i>]pyrrole-5-carboxylic Acid] and d-Serine. Journal of Pharmacology and Experimental Therapeutics, 2009, 328, 921-930.	2.5	80
46	Combined administration of an mGlu2/3 receptor agonist and a 5-HT2A receptor antagonist markedly attenuate the psychomotor-activating and neurochemical effects of psychostimulants. Psychopharmacology, 2009, 206, 641-651.	3.1	29
47	Dose-dependent effect of CDPPB, the mGluR5 positive allosteric modulator, on recognition memory is associated with GluR1 and CREB phosphorylation in the prefrontal cortex and hippocampus. Neuropharmacology, 2009, 57, 531-538.	4.1	170
48	The Influence of Subthalamic Nucleus Lesions on Sign-Tracking to Stimuli Paired with Food and Drug Rewards: Facilitation of Incentive Salience Attribution?. Neuropsychopharmacology, 2008, 33, 2352-2361.	5.4	55
49	The attribution of incentive salience to a stimulus that signals an intravenous injection of cocaine. Behavioural Brain Research, 2006, 169, 320-324.	2.2	152
50	Subthalamic nucleus lesions increase impulsive action and decrease impulsive choiceâ€fâ``â€fmediation by enhanced incentive motivation?. European Journal of Neuroscience, 2006, 24, 2345-2354.	2.6	114
51	Subthalamic Nucleus Lesions Enhance the Psychomotor-Activating, Incentive Motivational, and Neurobiological Effects of Cocaine. Journal of Neuroscience, 2005, 25, 8407-8415.	3.6	32
52	Amphetamineâ€induced câ€ <i>fos</i> mRNA expression in the caudateâ€putamen and subthalamic nucleus: interactions between dose, environment, and neuronal phenotype. Journal of Neurochemistry, 2003, 85, 105-114.	3.9	39
53	Cocaine-induced psychomotor activity is associated with its ability to induce c-fosmRNA expression in the subthalamic nucleus: effects of dose and repeated treatment. European Journal of Neuroscience, 2003, 17, 2180-2186.	2.6	32
54	Amphetamine and cocaine induce different patterns of c-fosmRNA expression in the striatum and subthalamic nucleus depending on environmental context. European Journal of Neuroscience, 2001, 13, 1977-1983.	2.6	105