Mohammad Alipour

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6679352/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluation of mechanical and microstructural of AlA380 based nanocomposite rein-forced with Tungsten Disulfide nanoparticles. Materials Research Express, 2019, 6, 0850g3.	1.6	1
2	Effects of Extrusion and Heat Treatment Conditions on Microstructure and Mechanical Properties of an Al–Zn–Mg–Cu–Er Alloy. Minerals, Metals and Materials Series, 2018, , 451-459.	0.4	2
3	Influence of Graphene Nanoplatelet Reinforcements on Microstructural Development and Wear Behavior of an Aluminum Alloy Nanocomposite. Minerals, Metals and Materials Series, 2018, , 233-246.	0.4	3
4	Characterization of graphene reinforced Al-Sn nanocomposite produced by mechanical alloying and vacuum hot pressing. Materials Today: Proceedings, 2018, 5, 24505-24514.	1.8	19
5	Influence of hot rolling on microstructure and mechanical behaviour of Al6061-ZrB2 in-situ metal matrix composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 738, 344-352.	5.6	50
6	Effect of hot extrusion and T6 heat treatment on microstructure and mechanical properties of Al-10Zn-3.5Mg-2.5Cu nanocomposite reinforced with graphene nanoplatelets. Journal of Manufacturing Processes, 2018, 36, 264-271.	5.9	32
7	Microstructure and mechanical behaviour of in situ fabricated AA6061–TiC metal matrix composites. Archives of Civil and Mechanical Engineering, 2017, 17, 535-544.	3.8	80
8	Influence of TiO2 nanoparticles incorporation to friction stir welded 5083 aluminum alloy on the microstructure, mechanical properties and wear resistance. Journal of Alloys and Compounds, 2017, 712, 795-803.	5.5	103
9	Synthesis and characterization of graphene nanoplatelets reinforced AA7068 matrix nanocomposites produced by liquid metallurgy route. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 706, 71-82.	5.6	56
10	Effect of multi-pass friction stir processing on the microstructure, mechanical and wear properties of AA5083/ZrO2 nanocomposites. Journal of Alloys and Compounds, 2017, 726, 1262-1273.	5.5	108
11	Effects of pre-deformation on microstructure and tensile properties of Al—Zn—Mg—Cu alloy produced by modified strain induced melt activation. Transactions of Nonferrous Metals Society of China, 2016, 26, 2283-2295.	4.2	20
12	Investigation of the effect of Al-8B master alloy and strain-induced melt activation process on dry sliding wear behavior of an Al–Zn–Mg–Cu alloy. Materials & Design, 2014, 53, 308-316.	5.1	18
13	Investigation of the effect of Al–5Ti–1B grain refiner on dry sliding wear behavior of an Al–Zn–Mg–Cu alloy formed by strain-induced melt activation process. Materials & Design, 2013, 46, 766-775.	5.1	32
14	Microstructure, hardness and tensile properties of A380 aluminum alloy with and without Li additions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 582, 409-414.	5.6	45
15	Effect of the strain-induced melt activation (SIMA) process on the tensile properties of a new developed super high strength aluminum alloy modified by Al5Ti1B grain refiner. Materials Characterization, 2012, 71, 6-18.	4.4	26
16	The effect of Al–8B grain refiner and heat treatment conditions on the microstructure, mechanical properties and dry sliding wear behavior of an Al–12Zn–3Mg–2.5Cu aluminum alloy. Materials & Design, 2012, 38, 64-73.	5.1	19
17	The influence of beryllium addition on the microstructure and mechanical properties of Al–15%Mg2Si in-situ metal matrix composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 8205-8211.	5.6	30
18	The effects of boron additions on the microstructure, hardness and tensile properties of in situ Al–15%Mg2Si composite. Materials & Design, 2011, 32, 5049-5054.	5.1	26

#	Article	IF	CITATIONS
19	Study on fracture behaviour of Al–15%Mg2Si metal matrix composite with and without beryllium additions. Journal of Materials Science, 2011, 46, 6856-6862.	3.7	9