Carlos P Bergmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6679148/publications.pdf

Version: 2024-02-01

185998 197535 2,978 129 28 49 citations g-index h-index papers 134 134 134 3896 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Alkali-activated system of carbide lime and rice husk for granular soil stabilisation. Proceedings of the Institution of Civil Engineers: Ground Improvement, 2023, 176, 279-294.	0.7	2
2	The effect of CaCO ₃ in the formation of carbon nanotubes via electrolysis of molten Li ₂ CO ₃ /CaCO ₃ mixtures. International Journal of Applied Ceramic Technology, 2022, 19, 451-458.	1.1	4
3	Jet Slurry Erosion of CERMET Nano-Coatings Obtained by HVOF. Engineering Materials, 2022, , 1-33.	0.3	o
4	Single-step synthesis of Fe-TiO2 nanotube arrays with improved light harvesting properties for application as photoactive electrodes. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 263, 114896.	1.7	14
5	Aluminum borophosphate glaze-coated aluminum alloy substrate: Coating properties and coating/substrate coupling. Ceramics International, 2021, 47, 2050-2057.	2.3	3
6	Improving the flexural-strength-to-density ratio in alumina ceramics with the addition of silicon nitride. Ceramics International, 2021, 47, 3964-3971.	2.3	12
7	The influence of cation distribution on the magnetic properties of mixed Co1-yNiyFe2O4 nanoferrites produced by the sol-gel method. Journal of Alloys and Compounds, 2021, 851, 156799.	2.8	18
8	Floating treatment wetlands integrated with microbial fuel cell for the treatment of urban wastewaters and bioenergy generation. Science of the Total Environment, 2021, 766, 142474.	3.9	40
9	Enhancement of magnetic and dielectric properties of KNbO3–CoFe2O4 multiferroic composites via thermal treatment. Ceramics International, 2021, 47, 4874-4883.	2.3	10
10	Chelating agents effects in nanoengineered silver structures over TiO2 nanotubes on Ti wires and their Rhodamine B detection activity. Materials Chemistry and Physics, 2021, 258, 123887.	2.0	2
11	Biomimetics and Composite Materials toward Efficient Mobility: A Review. Journal of Composites Science, 2021, 5, 22.	1.4	13
12	In-Plane Shear Strength of Single-Lap Co-Cured Joints of Self-Reinforced Polyethylene Composites. Materials, 2021, 14, 1517.	1.3	1
13	Influence of CVD parameters on Coâ€₹iO ₂ /CNT properties: A route to enhance energy harvesting from sunlight. International Journal of Applied Ceramic Technology, 2021, 18, 1297-1306.	1.1	5
14	AOX degradation of the pulp and paper industry bleaching wastewater using nZVI in two different agitation processes. Environmental Technology and Innovation, 2021, 22, 101420.	3.0	9
15	Role of the fuel stoichiometry and post-treatment temperature on the spinel inversion and magnetic properties of NiFe2O4 nanoparticles produced by solution combustion synthesis. Materials Research Bulletin, 2021, 138, 111238.	2.7	12
16	Effect of Feldspar Substitution by Basalt on Pyroplastic Behaviour of Porcelain Tile Composition. Materials, 2021, 14, 3990.	1.3	4
17	Tubular ceramic membranes coated with ZnO and applied in the disinfection of water contaminated with Staphylococcus aureus. Ceramics International, 2021, 47, 27082-27090.	2.3	6
18	Influence of processing parameters on the microstructure of the ecoâ€friendly glass foam. International Journal of Applied Ceramic Technology, 2021, 18, 862-868.	1.1	3

#	Article	IF	CITATIONS
19	True Strength of Ceramic Fiber Bundles: Experiments and Simulations. Materials, 2021, 14, 64.	1.3	0
20	Sintering-dependent mechanical and magnetic properties of spinel cobalt ferrite (CoFe2O4) ceramics prepared via sol-gel synthesis. Ceramics International, 2020, 46, 2465-2472.	2.3	37
21	Application of Al2O3/AlNbO4 in the oxidation of aniline to azoxybenzene. Chemical Papers, 2020, 74, 543-553.	1.0	6
22	Lanthanum-doped spinel cobalt ferrite (CoFe2O4) nanoparticles for environmental applications. Ceramics International, 2020, 46, 2772-2779.	2.3	81
23	Direct synthesis of singular silver dendrites over TiO2 nanotubes using pentetic acid as capping agent. Materials Letters, 2020, 264, 127163.	1.3	4
24	Novel coreâ€shell nanocomposites based on TiO ₂ â€covered magnetic Co ₃ O ₄ for biomedical applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 1879-1887.	1.6	16
25	One-step synthesis of carbon nanoflowers by arc discharge in water. Ceramics International, 2020, 46, 26229-26232.	2.3	3
26	Electrochemical Response of Highly Porous Percolative CGO Electrospun Membranes. Catalysts, 2020, 10, 756.	1.6	0
27	Ecofriendly synthesis of MWCNTs by electric arc in aqueous medium: Comparative study of 6B pencil and mineral graphite. International Journal of Applied Ceramic Technology, 2020, 17, 2357-2367.	1.1	4
28	Sucrose as a sol-gel synthesis additive for tuning spinel inversion and improving the magnetic properties of CoFe2O4 nanoparticles. Ceramics International, 2020, 46, 12759-12766.	2.3	22
29	Cerium Dioxide Particles to Tune Radiopacity of Dental Adhesives: Microstructural and Physico-Chemical Evaluation. Journal of Functional Biomaterials, 2020, $11,7$.	1.8	13
30	Quick synthesis of homogeneous Nb2O5 nanorod arrays via a microwave-assisted hydrothermal method. Materials Letters, 2020, 265, 127429.	1.3	10
31	Exploring Needle-Like Zinc Oxide Nanostructures for Improving Dental Resin Sealers: Design and Evaluation of Antibacterial, Physical and Chemical Properties. Polymers, 2020, 12, 789.	2.0	10
32	Multianalytical approach of stay-in-place polyvinyl chloride formwork concrete exposed to high temperatures. Journal of Materials Research and Technology, 2020, 9, 5045-5055.	2.6	6
33	The Influence of Different Concentrations of a Natural Clay Material as Active Principle in Cosmetic Formulations. Materials Research, 2020, 23, .	0.6	9
34	Synthesis and Characterization of Zinc Oxide Obtained by Combining Zinc Nitrate with Sodium Hydroxide in Polyol Medium. Materials Research, 2020, 23, .	0.6	27
35	Effect of LZSA glass-ceramic addition on the erosive wear of pressureless sintered alumina. REM: International Engineering Journal, 2020, 73, 179-188.	0.2	2
36	Microwave-synthesized KNbO3 perovskites: photocatalytic pathway on the degradation of rhodamine B. Ceramics International, 2019, 45, 24137-24145.	2.3	48

3

#	Article	lF	CITATIONS
37	The influence of solvent composition in the sol-gel synthesis of cobalt ferrite (CoFe2O4): A route to tuning its magnetic and mechanical properties. Journal of the European Ceramic Society, 2019, 39, 3442-3449.	2.8	32
38	Comparative Study of Jet Slurry Erosion of Martensitic Stainless Steel with Tungsten Carbide HVOF Coating. Metals, 2019, 9, 600.	1.0	17
39	Erosion resistance of engineering ceramics and comparative assessment through Wiederhorn and Evans equations. Wear, 2019, 432-433, 202938.	1.5	6
40	Glass foams produced from soda-lime glass waste and rice husk ash applied as partial substitutes for concrete aggregates. Chemical Engineering Research and Design, 2019, 128, 77-84.	2.7	32
41	Predicting the Tensile Behaviour of Cast Alloys by a Pattern Recognition Analysis on Experimental Data. Metals, 2019, 9, 557.	1.0	31
42	Excess of cations in the sol-gel synthesis of cobalt ferrite (CoFe2O4): A pathway to switching the inversion degree of spinels. Journal of Magnetism and Magnetic Materials, 2019, 482, 1-8.	1.0	57
43	Evaluation and characterization of Melo Bentonite clay for cosmetic applications. Applied Clay Science, 2019, 175, 40-46.	2.6	30
44	CNT sponges with outstanding absorption capacity and electrical properties: Impact of the CVD parameters on the product structure. Ceramics International, 2019, 45, 13761-13771.	2.3	10
45	Cobalt-doped titanium oxide nanotubes grown via one-step anodization for water splitting applications. Applied Surface Science, 2019, 464, 351-359.	3.1	31
46	Corrosion damages of flow regulation valves for water injection in oil fields. Engineering Failure Analysis, 2019, 96, 362-373.	1.8	8
47	Novel nanoarchitectured cobalt-doped TiO2 and carbon nanotube arrays: Synthesis and photocurrent performance. Ceramics International, 2019, 45, 2439-2445.	2.3	10
48	Sol-gel synthesis of substoichiometric cobalt ferrite (CoFe2O4) spinels: Influence of additives on their stoichiometry and magnetic properties. Ceramics International, 2018, 44, 12381-12388.	2.3	49
49	Tunable green/red luminescence by infrared upconversion in biocompatible forsterite nanoparticles with high erbium doping uptake. Optical Materials, 2018, 76, 407-415.	1.7	16
50	Effect of nanostructured zirconium dioxide incorporation in an experimental adhesive resin. Clinical Oral Investigations, 2018, 22, 2209-2218.	1.4	19
51	Conductivity dynamics of metallic-to-insulator transition near room temperature in normal spinel CoFe ₂ O ₄ nanoparticles. Journal of Materials Chemistry C, 2018, 6, 4720-4726.	2.7	19
52	The rapid synthesis of nanostructured orthorhombic KNbO3 particles by a microwave-assisted hydrothermal method and their characterization. Ceramics International, 2018, 44, 4758-4765.	2.3	11
53	Facile Synthesis by Peroxide Method and Microwaveâ€Assisted Hydrothermal Treatment of TiO ₂ with High Photocatalytic Efficiency for Dye Degradation and Hydrogen Production. ChemistrySelect, 2018, 3, 11454-11459.	0.7	4
54	One-step synthesis of nanograss-free TiO2 nanotubes using DTPA-enriched electrolytes. Ceramics International, 2018, 44, 22345-22351.	2.3	17

#	Article	IF	Citations
55	Luminescent anti-reflection coatings based on Er3+ doped forsterite for commercial silicon solar cells applications. Solar Energy, 2018, 170, 752-761.	2.9	14
56	Mechanical Characterization of Gres Porcelain and Low-Velocity Impact Numerical Modeling. Materials, 2018, 11, 1082.	1.3	8
57	Synthesis and characterization of polypropylene/iron encapsulated carbon nanotube composites with high magnetic response at room temperature. Polymer, 2017, 118, 68-74.	1.8	19
58	Carbon nanotubes functionalized with titanium complexes for hexavalent chromium adsorption: An ab initio approach. Computational and Theoretical Chemistry, 2017, 1113, 110-119.	1.1	6
59	Electrochemical characteristics of La 0.6 Sr 0.4 Co 1â^'y Fe y O 3 (y=0.2â€"1.0) fiber cathodes. Ceramics International, 2017, 43, 8715-8720.	2.3	17
60	Nanoscale synthesis of single-phase forsterite by reverse strike co-precipitation and its high optical and mechanical properties. Ceramics International, 2017, 43, 16225-16231.	2.3	18
61	Synthesis of highâ€density polyethylene/rGOâ€CNTâ€Fe nanocomposites with outstanding magnetic and electrical properties. Journal of Applied Polymer Science, 2017, 134, 45382.	1.3	14
62	3D CNT macrostructure synthesis catalyzed by MgFe2O4 nanoparticlesâ€"A study of surface area and spinel inversion influence. Applied Surface Science, 2017, 422, 321-330.	3.1	24
63	Biodiesel production using coal fly ash-derived sodalite as a heterogeneous catalyst. Fuel, 2017, 190, 268-273.	3.4	93
64	Analysis of Composite Membranes in the Separation of Emulsions Sunflower oil/water. Materials Research, 2017, 20, 843-852.	0.6	10
65	Mg2SiO4:Er3+ Coating for Efficiency Increase of Silicon-Based Commercial Solar Cells. Smart Innovation, Systems and Technologies, 2017, , 820-828.	0.5	3
66	Preparation and Performance of TiO2-ZnO/CNT Hetero-Nanostructures Applied to Photodegradation of Organic Dye. Materials Research, 2016, 19, 1372-1375.	0.6	20
67	Influence of Different Defects in Vertically Aligned Carbon Nanotubes on TiO ₂ Nanoparticle Formation through Atomic Layer Deposition. ACS Applied Materials & Defection (1978) and 1979 and 1979 are 1979 and 1979 and 1979 are 1979 are 1979 and 1979 are 1979 are 1979 are 1979 and 1979 are 19	4.0	22
68	Application of hydrothermally produced TiO2 nanotubes in photocatalytic esterification of oleic acid. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2016, 206, 17-21.	1.7	31
69	Evaluation of a methodology of biodiesel purification: study of the contaminant removal capacity. Biofuels, 2016, 7, 155-161.	1.4	5
70	Synthesis and characterization of magnetic carbon nanotubes/silsesquioxane nanocomposite thin films. Applied Surface Science, 2016, 371, 9-15.	3.1	5
71	Physical and chemical characterization and method for the decontamination of clays for application in cosmetics. Applied Clay Science, 2016, 124-125, 252-259.	2.6	37
72	Electrical Properties of La _{0.6} Sr _{0.4} Co _{1â€"<i>y</i>} Fe _{<i>y</i>} Co ₃ (<i>y</i>)Fe _{<i>y</i>>} Co ₃ (<i>y</i>)Fe _{<i>y</i>)} Co ₃ Co ₄ Co _{Co₄Co₄Co₆Co₆Co_{Co₆Co₇Co₆Co₇Co<s< td=""><td>1.5</td><td>20</td></s<>}}	1.5	20

#	Article	IF	Citations
73	Electrochemical treatment of a graphitic forging lubricant effluent: The effect of chloride concentration and current density. Separation Science and Technology, 2016, 51, 126-134.	1.3	1
74	Enzymatic surface modification of sisal fibers (Agave Sisalana) by Penicillium echinulatum cellulases. Fibers and Polymers, 2015, 16, 2112-2120.	1.1	17
75	Preparation and Characterization of PA66/Alumina Composite Membrane. Materials Research, 2015, 18, 748-755.	0.6	13
76	Flame Spray Technology. Topics in Mining, Metallurgy and Materials Engineering, 2015, , .	1.4	4
77	Designing of TiO2/MWCNT Nanocomposites for Photocatalytic Degradation of Organic Dye. Particulate Science and Technology, 2015, 33, 308-313.	1.1	6
78	Ceramic Products Produced by FS. Topics in Mining, Metallurgy and Materials Engineering, 2015, , 43-72.	1.4	1
79	Future Trends in Flame Spray Process. Topics in Mining, Metallurgy and Materials Engineering, 2015, , 73-81.	1.4	O
80	A Brief Overview on Flame Spray Synthesis. Topics in Mining, Metallurgy and Materials Engineering, 2015, , 11-20.	1.4	1
81	Synthesis of ZnO through biomimetization of eggshell membranes using different precursors and its characterization. Ceramics International, 2015, 41, 14826-14833.	2.3	15
82	Adsorption of a textile dye from aqueous solutions by carbon nanotubes. Materials Research, 2014, 17, 153-160.	0.6	41
83	Synthesis of niobium oxide fibers by electrospinning and characterization of their morphology and optical properties. Ceramics International, 2014, 40, 16195-16200.	2.3	17
84	Synthesis and characterization of alumina spheroids supported ceria and zirconia catalysts applied in methane combustion. Materials Research Bulletin, 2014, 60, 760-765.	2.7	2
85	Electrochemical performance of gadolinia-doped ceria (CGO) electrolyte thin films for ITSOFC deposited by spray pyrolysis. Journal of Power Sources, 2014, 261, 348-355.	4.0	26
86	Niobium pentoxide as a novel filler for dental adhesive resin. Journal of Dentistry, 2013, 41, 106-113.	1.7	65
87	Ba0.5Sr0.5Co0.8Fe0.2O3â^î^(BSCF) feedstock development and optimization for thermoplastic forming of thin planar and tubular oxygen separation membranes. Journal of Membrane Science, 2013, 443, 237-245.	4.1	18
88	Preparation and characterization of composite membranes ceramic/PSf and ceramic/PA 66. Desalination and Water Treatment, 2013, 51, 2666-2671.	1.0	2
89	Adsorption of Direct Blue 53 dye from aqueous solutions by multi-walled carbon nanotubes and activated carbon. Journal of Environmental Management, 2013, 130, 166-175.	3.8	154
90	The addition of nanostructured hydroxyapatite to an experimental adhesive resin. Journal of Dentistry, 2013, 41, 321-327.	1.7	93

#	Article	IF	CITATIONS
91	Visible and UV photocatalytic characterization of Sn–TiO2 electrospun fibers. Catalysis Today, 2013, 208, 7-10.	2.2	23
92	Photocatalytic activity of nanoneedles, nanospheres, and polyhedral shaped ZnO powders in organic dye degradation processes. Journal of Alloys and Compounds, 2013, 572, 68-73.	2.8	33
93	Electrical and Microstructural Properties of Varistors Based on Nanostructured Tetra-Needle Like Zinc Oxide Powders. Materials Science Forum, 2012, 727-728, 533-538.	0.3	O
94	Adsorption of Reactive Blue 4 dye from water solutions by carbon nanotubes: experiment and theory. Physical Chemistry Chemical Physics, 2012, 14, 11139.	1.3	155
95	Investigation of clay content and sintering temperature on attrition resistance of highly porous diatomite based material. Applied Clay Science, 2011, 52, 115-121.	2.6	70
96	Structural and photocatalytic characterization of BaFe2O4 obtained at low temperatures. Materials Research, 2011, 14, 505-507.	0.6	13
97	Adsorption of Reactive Red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon. Journal of Hazardous Materials, 2011, 192, 1122-1131.	6.5	309
98	Novel method to produce \hat{I}^2 -TCP scaffolds. Materials Letters, 2011, 65, 275-277.	1.3	25
99	Application of cerium oxide electrospun fibers in the catalytic combustion of methane. Applied Catalysis A: General, 2011, 405, 79-83.	2.2	31
100	Influence of heating rate on the microstructure of glass foams. Waste Management and Research, 2011, 29, 172-179.	2.2	13
101	Protection against Erosive Wear Using Thermal Sprayed Cermet. , 2011, , .		16
102	Materials for Adsorbent Applications. , 2011, , 141-155.		2
103	Application of titania fibers obtained by electrospinning in photocatalytic degradation of methyl orange. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2009, 44, 835-840.	0.9	7
104	Electrical conductive double-walled carbon nanotubes $\hat{a}\in$ Silica glass nanocomposites prepared by the sol $\hat{a}\in$ gel process and spark plasma sintering. Scripta Materialia, 2009, 61, 988-991.	2.6	13
105	Tialite formation from its quasi-amorphous stoichiometric co-precipitated powder by thermal spray process. Surface and Coatings Technology, 2009, 203, 3626-3630.	2.2	3
106	Porcelain Casting Slips Formulated with Waste Glass. International Journal of Applied Ceramic Technology, 2009, 6, 264-269.	1.1	6
107	Mechanical behavior of alumina and alumina-feldspar based ceramics in an acetic acid (4%) environment. Materials & Design, 2009, 30, 4348-4359.	5.1	10
108	Injectability evaluation of tricalcium phosphate bone cement. Journal of Materials Science: Materials in Medicine, 2008, 19, 2241-2246.	1.7	62

#	Article	IF	CITATIONS
109	Thin, conductive, carbon nanotube networks over transparent substrates by electrophoretic deposition. Journal of Materials Chemistry, 2008, 18, 776.	6.7	66
110	Carbon nanotube/silica composites obtained by sol–gel and high-pressure techniques. Nanotechnology, 2008, 19, 265607.	1.3	36
111	Heat Transfer in Steelmaking Ladle. Journal of Iron and Steel Research International, 2008, 15, 11-14.	1.4	28
112	Sinterability study of ceramic bodies made from a mixture of mineral coal bottom ash and soda-lime glass cullet. Waste Management and Research, 2007, 25, 77-82.	2.2	4
113	Dynamic percolation of carbon nanotubes in liquid medium. Journal of Materials Chemistry, 2007, 17, 4846.	6.7	26
114	The effect of the combustible agents on the synthesis of Fe–Mo/MgO catalysts for the production of carbon nanotubes. Physica Status Solidi (B): Basic Research, 2007, 244, 3901-3906.	0.7	6
115	Method for continuous production of catalysts for synthesis of carbon nanotubes. Physica Status Solidi (B): Basic Research, 2007, 244, 3930-3934.	0.7	4
116	In-situ synthesis of transparent and conductive carbon nanotube networks. Physica Status Solidi - Rapid Research Letters, 2007, 1, 165-167.	1.2	11
117	Electrical properties of transparent carbon nanotube networks prepared through different techniques. Physica Status Solidi - Rapid Research Letters, 2007, 1, 178-180.	1.2	55
118	Synthesis by the solution combustion process and magnetic properties of iron oxide (Fe3O4 and) Tj ETQq0 0 0	rgBT <i>[</i> Over	lock 10 Tf 50
119	Influência de aditivos na injetabilidade de cimento ósseo de fosfato tricálcico. Revista Materia, 2006, 11, 324-331.	0.1	4
120	Hydrogen Potential Sources in Refractory Materials during Steel Casting. Steel Research International, 2006, 77, 400-403.	1.0	4
121	Electrostatic painting residues as an alternative raw material for red clay industry. Waste Management and Research, 2006, 24, 537-544.	2.2	5
122	Recycling of iron foundry sand and glass waste as raw material for production of whiteware. Waste Management and Research, 2006, 24, 60-66.	2.2	33
123	Waste glass in porcelain. Materials Research, 2005, 8, 39-44.	0.6	24
124	Chemical Resistance of Silicate Glass-Ceramics. Particulate Science and Technology, 2005, 23, 309-322.	1.1	0
125	The Effects of pH on the Preparation of Alumina by Sol-Gel Process. Particulate Science and Technology, 2005, 23, 351-360.	1.1	3
126	Environmental and technical aspects of the utilisation of tannery sludge as a raw material for clay products. Journal of the European Ceramic Society, 2002, 22, 2251-2259.	2.8	113

#	Article	IF	CITATIONS
127	Nanostructured YSZ Thin Film for Application as Electrolyte in an Electrode Supported SOFC. Materials Science Forum, 0, 727-728, 873-878.	0.3	O
128	Wollastonite as a Flux for Ceramics Bodies. Materials Science Forum, 0, 727-728, 1016-1021.	0.3	6
129	Copper-impregnated ceramic membranes and their anti-microbial effect against Escherichia coli. , 0, 111 , 48-56.		2