Nirmal Goswami

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6678566/publications.pdf

Version: 2024-02-01

54 3,948 30 papers citations h-index

56 56 56 4396 all docs docs citations times ranked citing authors

54

g-index

#	Article	IF	CITATIONS
1	Luminescent Metal Nanoclusters with Aggregation-Induced Emission. Journal of Physical Chemistry Letters, 2016, 7, 962-975.	4.6	595
2	Copper Quantum Clusters in Protein Matrix: Potential Sensor of Pb ²⁺ Ion. Analytical Chemistry, 2011, 83, 9676-9680.	6. 5	311
3	Functionalization of metal nanoclusters for biomedical applications. Analyst, The, 2016, 141, 3126-3140.	3.5	279
4	Highly Luminescent Thiolated Gold Nanoclusters Impregnated in Nanogel. Chemistry of Materials, 2016, 28, 4009-4016.	6.7	212
5	Ag ₇ Au ₆ : A 13â€Atom Alloy Quantum Cluster. Angewandte Chemie - International Edition, 2012, 51, 2155-2159.	13.8	210
6	Bio-NCs – the marriage of ultrasmall metal nanoclusters with biomolecules. Nanoscale, 2014, 6, 13328-13347.	5.6	199
7	Engineering gold-based radiosensitizers for cancer radiotherapy. Materials Horizons, 2017, 4, 817-831.	12.2	173
8	Mechanistic exploration and controlled synthesis of precise thiolate-gold nanoclusters. Coordination Chemistry Reviews, 2016, 329, 1-15.	18.8	161
9	Recent advances in the synthesis, characterization, and biomedical applications of ultrasmall thiolated silver nanoclusters. RSC Advances, 2014, 4, 60581-60596.	3.6	128
10	Luminescent, bimetallic AuAg alloy quantum clusters in protein templates. Nanoscale, 2012, 4, 4255.	5 . 6	119
11	Biocompatible functionalisation of nanoclays for improved environmental remediation. Chemical Society Reviews, 2019, 48, 3740-3770.	38.1	104
12	Interfacial engineering of gold nanoclusters for biomedical applications. Materials Horizons, 2020, 7, 2596-2618.	12.2	91
13	Cyclodextrin–gold nanocluster decorated TiO ₂ enhances photocatalytic decomposition of organic pollutants. Journal of Materials Chemistry A, 2018, 6, 1102-1108.	10.3	90
14	Proteinâ€Directed Synthesis of NIRâ€Emitting, Tunable HgS Quantum Dots and their Applications in Metalâ€Ion Sensing. Small, 2012, 8, 3175-3184.	10.0	78
15	Rational surface modification of Mn3O4 nanoparticles to induce multiple photoluminescence and room temperature ferromagnetism. Journal of Materials Chemistry C, 2013, 1, 1885.	5.5	76
16	Protein-encapsulated gold cluster aggregates: the case of lysozyme. Nanoscale, 2013, 5, 2009.	5.6	75
17	Insights into the effect of surface ligands on the optical properties of thiolated Au ₂₅ nanoclusters. Chemical Communications, 2016, 52, 5234-5237.	4.1	75
18	Ultrasmall AgNP-Impregnated Biocompatible Hydrogel with Highly Effective Biofilm Elimination Properties. ACS Applied Materials & Samp; Interfaces, 2020, 12, 41011-41025.	8.0	75

#	Article	IF	CITATIONS
19	Enhancing stability through ligand-shell engineering: A case study with Au25(SR)18 nanoclusters. Nano Research, 2015, 8, 3488-3495.	10.4	66
20	In Situ Fabrication of Flexible, Thermally Stable, Large-Area, Strongly Luminescent Copper Nanocluster/Polymer Composite Films. Chemistry of Materials, 2017, 29, 10206-10211.	6.7	58
21	Driving Forces and Routes for Aggregation-Induced Emission-Based Highly Luminescent Metal Nanocluster Assembly. Journal of Physical Chemistry Letters, 2021, 12, 9033-9046.	4.6	51
22	Ligands Modulate Reaction Pathway in the Hydrogenation of 4â€Nitrophenol Catalyzed by Gold Nanoclusters. ChemCatChem, 2018, 10, 395-402.	3.7	47
23	Engineering Metal Nanoclusters for Targeted Therapeutics: From Targeting Strategies to Therapeutic Applications. Advanced Functional Materials, 2021, 31, 2105662.	14.9	47
24	Emergence of Multicolor Photoluminescence in La _{0.67} Sr _{0.33} MnO ₃ Nanoparticles. Journal of Physical Chemistry C, 2012, 116, 25623-25629.	3.1	37
25	pH-Responsive aggregation-induced emission of Au nanoclusters and crystallization of the Au(<scp>i</scp>)–thiolate shell. Materials Chemistry Frontiers, 2018, 2, 923-928.	5.9	37
26	Probing the Microporous Structure of Silica Shell Via Aggregationâ€Induced Emission in Au(I)â€Thiolate@SiO ₂ Nanoparticle. Small, 2016, 12, 6537-6541.	10.0	36
27	The Impact of Engineered Silver Nanomaterials on the Immune System. Nanomaterials, 2020, 10, 967.	4.1	36
28	Unprecedented catalytic activity of Mn3O4 nanoparticles: potential lead of a sustainable therapeutic agent for hyperbilirubinemia. RSC Advances, 2014, 4, 5075.	3.6	35
29	Polycationic Silver Nanoclusters Comprising Nanoreservoirs of Ag ⁺ lons with High Antimicrobial and Antibiofilm Activity. ACS Applied Materials & Samp; Interfaces, 2022, 14, 390-403.	8.0	35
30	MoS ₂ Nanocrystals Confined in a DNA Matrix Exhibiting Energy Transfer. Langmuir, 2013, 29, 11471-11478.	3.5	31
31	Protein-assisted synthesis route of metal nanoparticles: exploration of key chemistry of the biomolecule. Journal of Nanoparticle Research, 2011, 13, 5485-5495.	1.9	30
32	Luminescent iron clusters in solution. Nanoscale, 2014, 6, 1848-1854.	5.6	28
33	Ultrasmall Gold Nanocluster Based Antibacterial Nanoaggregates for Infectious Wound Healing. ChemNanoMat, 2019, 5, 1176-1181.	2.8	27
34	The interplay between size and valence state on the antibacterial activity of sub-10 nm silver nanoparticles. Nanoscale Advances, 2019, 1, 2365-2371.	4.6	27
35	Synthesis of environmentally benign ultra-small copper nanoclusters-halloysite composites and their catalytic performance on contrasting azo dyes. Applied Surface Science, 2021, 546, 149122.	6.1	27
36	Toward an Alternative Intrinsic Probe for Spectroscopic Characterization of a Protein. Journal of Physical Chemistry B, 2010, 114, 15236-15243.	2.6	25

#	Article	IF	CITATIONS
37	Luminescent AgAu Alloy Clusters Derived from Ag Nanoparticles – Manifestations of Tunable Au ^I –Cu ^I Metallophilic Interactions. European Journal of Inorganic Chemistry, 2014, 2014, 908-916.	2.0	23
38	Unraveling the molecular mechanism of photosynthetic toxicity of highly fluorescent silver nanoclusters to Scenedesmus obliquus. Scientific Reports, 2017, 7, 16432.	3.3	21
39	Uptake and effect of highly fluorescent silver nanoclusters on Scenedesmus obliquus. Chemosphere, 2016, 153, 322-331.	8.2	20
40	Converting ultrafine silver nanoclusters to monodisperse silver sulfide nanoparticles via a reversible phase transfer protocol. Nano Research, 2016, 9, 942-950.	10.4	19
41	Traceable Nanocluster–Prodrug Conjugate for Chemo-photodynamic Combinatorial Therapy of Non-small Cell Lung Cancer. ACS Applied Bio Materials, 2021, 4, 3232-3245.	4.6	17
42	Spatially Localized Synthesis of Metal Nanoclusters on Clay Nanotubes and Their Catalytic Performance. ACS Sustainable Chemistry and Engineering, 2019, 7, 18350-18358.	6.7	16
43	High-Yield Synthesis of AIE-Type Au ₂₂ (SG) ₁₈ Nanoclusters through Precursor Engineering and Its pH-Dependent Size Transformation. Journal of Physical Chemistry C, 2021, 125, 4066-4076.	3.1	15
44	Preparation of water soluble l-arginine capped CdSe/ZnS QDs and their interaction with synthetic DNA: Picosecond-resolved FRET study. Materials Research Bulletin, 2012, 47, 1912-1918.	5.2	12
45	Gold nanocluster based nanocomposites for combinatorial antibacterial therapy for eradicating biofilm forming pathogens. Materials Chemistry Frontiers, 2022, 6, 689-706.	5.9	9
46	Surface Engineering for Controlled Nanocatalysis: Key Dynamical Events from Ultrafast Electronic Spectroscopy. Journal of Physical Chemistry C, 2014, 118, 23434-23442.	3.1	7
47	Ultra-small gold nanoclusters assembled on plasma polymer-modified zeolites: a multifunctional nanohybrid with anti-haemorrhagic and anti-inflammatory properties. Nanoscale, 2021, 13, 19936-19945.	5.6	7
48	A Potential Carcinogenic Pyrene Derivative under Förster Resonance Energy Transfer to Various Energy Acceptors in Nanoscopic Environments. ChemPhysChem, 2013, 14, 3581-3593.	2.1	6
49	AIE-Type Metal Nanoclusters: Synthesis, Luminescence, Fundamentals and Applications., 2019, , 265-289.		6
50	Core-in-cage structure regulated properties of ultra-small gold nanoparticles. Nanoscale Advances, 2019, , .	4.6	5
51	Slow Solvent Relaxation Dynamics of Nanometer Sized Reverse Micellar Systems Through Tryptophan Metabolite, Kynurenine. Photochemistry and Photobiology, 2012, 88, 38-45.	2.5	3
52	Silica Nanoparticles: Probing the Microporous Structure of Silica Shell Via Aggregation-Induced Emission in Au(I)-Thiolate@SiO2 Nanoparticle (Small 47/2016). Small, 2016, 12, 6536-6536.	10.0	3
53	Engineering Au Nanoclusters for Relay Luminescence Enhancement with Aggregation-Induced Emission. Nanomaterials, 2022, 12, 777.	4.1	2
54	Functionalization and Application. Frontiers of Nanoscience, 2015, 9, 297-345.	0.6	1