Anna-Marie Fairhurst

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6678553/publications.pdf

Version: 2024-02-01

35 papers

2,845 citations

236833 25 h-index 377752 34 g-index

35 all docs 35 docs citations

35 times ranked 4994 citing authors

#	Article	IF	CITATIONS
1	Assessing Lupusâ€Like Disease in Murine Model Systems. Current Protocols, 2021, 1, e272.	1.3	O
2	RNA-Sequencing-Based Transcriptomic Analysis Reveals a Role for Annexin-A1 in Classical and Influenza A Virus-Induced Autophagy. Cells, 2020, 9, 1399.	1.8	9
3	Met-Flow, a strategy for single-cell metabolic analysis highlights dynamic changes in immune subpopulations. Communications Biology, 2020, 3, 305.	2.0	82
4	Lowâ€Density Neutrophils in Systemic Lupus Erythematosus. Arthritis and Rheumatology, 2020, 72, 1587-1595.	2.9	42
5	Characterisation of a human antibody that potentially links cytomegalovirus infection with systemic lupus erythematosus. Scientific Reports, 2019, 9, 9998.	1.6	13
6	TLR7 Protein Expression in Mild and Severe Lupus-Prone Models Is Regulated in a Leukocyte, Genetic, and IRAK4 Dependent Manner. Frontiers in Immunology, 2019, 10, 1546.	2.2	20
7	Toll-like receptor 7 deficiency promotes survival and reduces adverse left ventricular remodelling after myocardial infarction. Cardiovascular Research, 2019, 115, 1791-1803.	1.8	25
8	A Flow Cytometryâ€Based Assay for Highâ€Throughput Detection and Quantification of Neutrophil Extracellular Traps in Mixed Cell Populations. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2019, 95, 268-278.	1.1	41
9	Toll‣ike Receptor 9 Deficiency Breaks Tolerance to RNAâ€Associated Antigens and Upâ€Regulates Toll‣ike Receptor 7 Protein in <i>Sle1</i> Mice. Arthritis and Rheumatology, 2018, 70, 1597-1609.	2.9	12
10	Brief report: Decreased expression of CD244 (SLAMF4) on monocytes and platelets in patients with systemic lupus erythematosus. Clinical Rheumatology, 2018, 37, 811-816.	1.0	12
11	Induction of Human T-cell and Cytokine Responses Following Vaccination with a Novel Influenza Vaccine. Scientific Reports, 2018, 8, 18007.	1.6	33
12	Modelling clinical systemic lupus erythematosus: similarities, differences and success stories. Rheumatology, 2017, 56, kew400.	0.9	34
13	Pathways leading to an immunological disease: systemic lupus erythematosus. Rheumatology, 2017, 56, i55-i66.	0.9	124
14	Clinical utility of circulating anti-N-methyl-d-aspartate receptor subunits NR2A/B antibody for the diagnosis of neuropsychiatric syndromes in systemic lupus erythematosus and Sj¶gren's syndrome: An updated meta-analysis. Autoimmunity Reviews, 2017, 16, 114-122.	2.5	55
15	Monocyte Siglec-14 expression is upregulated in patients with systemic lupus erythematosus and correlates with lupus disease activity. Rheumatology, 2017, 56, kew498.	0.9	10
16	Annexin-A1 enhances breast cancer growth and migration by promoting alternative macrophage polarization in the tumour microenvironment. Scientific Reports, 2017, 7, 17925.	1.6	76
17	TLR7 and TLR9 ligands regulate antigen presentation by macrophages. International Immunology, 2016, 28, 223-232.	1.8	43
18	High Mitochondrial Respiration and Glycolytic Capacity Represent a Metabolic Phenotype of Human Tolerogenic Dendritic Cells. Journal of Immunology, 2015, 194, 5174-5186.	0.4	183

#	Article	IF	Citations
19	RNA sensing by conventional dendritic cells is central to the development of lupus nephritis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6195-204.	3.3	49
20	Toll-like receptors in systemic lupus erythematosus: potential for personalized treatment. Frontiers in Pharmacology, 2014, 5, 265.	1.6	57
21	Human plasmacytoid dendritic cells regulate IFN-α production through activation-induced splicing of IL-18Rα. Journal of Leukocyte Biology, 2014, 96, 1037-1046.	1.5	4
22	The Exonuclease Trex1 Restrains Macrophage Proinflammatory Activation. Journal of Immunology, 2013, 191, 6128-6135.	0.4	40
23	Annexin-A1 Regulates TLR-Mediated IFN- \hat{l}^2 Production through an Interaction with TANK-Binding Kinase 1. Journal of Immunology, 2013, 191, 4375-4382.	0.4	40
24	Enhanced Neutralizing Antibody Titers and Th1 Polarization from a Novel Escherichia coli Derived Pandemic Influenza Vaccine. PLoS ONE, 2013, 8, e76571.	1.1	25
25	B Cell TLR7 Expression Drives Anti-RNA Autoantibody Production and Exacerbates Disease in Systemic Lupus Erythematosus–Prone Mice. Journal of Immunology, 2012, 189, 5786-5796.	0.4	111
26	TLR7 and TLR9 in SLE: when sensing self goes wrong. Immunologic Research, 2012, 53, 58-77.	1.3	179
27	Dysregulated expression of CXCR4/CXCL12 in subsets of patients with systemic lupus erythematosus. Arthritis and Rheumatism, 2010, 62, 3436-3446.	6.7	79
28	Type I Interferons Produced by Resident Renal Cells May Promote End-Organ Disease in Autoantibody-Mediated Glomerulonephritis. Journal of Immunology, 2009, 183, 6831-6838.	0.4	82
29	CXCR4/CXCL12 Hyperexpression Plays a Pivotal Role in the Pathogenesis of Lupus. Journal of Immunology, 2009, 182, 4448-4458.	0.4	109
30	Temporal Changes in Myeloid Cells in the Cervix during Pregnancy and Parturition. Journal of Immunology, 2009, 182, 2700-2707.	0.4	110
31	Systemic IFNâ€Î± drives kidney nephritis in B6. <i>Sle123 </i> mice. European Journal of Immunology, 2008, 38, 1948-1960.	1.6	89
32	<i>Yaa</i> autoimmune phenotypes are conferred by overexpression of TLR7. European Journal of Immunology, 2008, 38, 1971-1978.	1.6	150
33	Autoantibody profiling to identify individuals at risk for systemic lupus erythematosus. Journal of Autoimmunity, 2006, 27, 153-160.	3.0	162
34	Systemic Lupus Erythematosus: Multiple Immunological Phenotypes in a Complex Genetic Disease. Advances in Immunology, 2006, 92, 1-69.	1.1	165
35	IL-21 Induces Differentiation of Human Naive and Memory B Cells into Antibody-Secreting Plasma Cells. Journal of Immunology, 2005, 175, 7867-7879.	0.4	580