
Pankaj Kumar Srivastava

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6678467/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biological removal of arsenic pollution by soil fungi. Science of the Total Environment, 2011, 409, 2430-2442.	8.0	177
2	Amelioration of Sodic Soil for Wheat Cultivation Using Bioaugmented Organic Soil Amendment. Land Degradation and Development, 2016, 27, 1245-1254.	3.9	64
3	A novel arsenic methyltransferase gene of Westerdykella aurantiaca isolated from arsenic contaminated soil: phylogenetic, physiological, and biochemical studies and its role in arsenic bioremediation. Metallomics, 2016, 8, 344-353.	2.4	54
4	Influence of earthworm culture on fertilization potential and biological activities of vermicomposts prepared from different plant wastes. Journal of Plant Nutrition and Soil Science, 2011, 174, 420-429.	1.9	37
5	Arsenic accumulation in native plants of West Bengal, India: prospects for phytoremediation but concerns with the use of medicinal plants. Environmental Monitoring and Assessment, 2012, 184, 2617-2631.	2.7	37
6	Use of a Bioaugmented Organic Soil Amendment in Combination with Gypsum for Withania somnifera Growth on Sodic Soil. Pedosphere, 2016, 26, 299-309.	4.0	32
7	Application of four novel fungal strains to remove arsenic from contaminated water in batch and column modes. Journal of Hazardous Materials, 2018, 356, 98-107.	12.4	30
8	Plants exert beneficial influence on soil microbiome in a HCH contaminated soil revealing advantage of microbe-assisted plant-based HCH remediation of a dumpsite. Chemosphere, 2021, 280, 130690.	8.2	24
9	Unravelling the emerging threats of microplastics to agroecosystems. Reviews in Environmental Science and Biotechnology, 2022, 21, 771-798.	8.1	22
10	Stimulatory Effects of Arsenic-Tolerant Soil Fungi on Plant Growth Promotion and Soil Properties. Microbes and Environments, 2012, 27, 477-482.	1.6	20
11	Bioavailability of arsenic in agricultural soils under the influence of different soil properties. SN Applied Sciences, 2020, 2, 1.	2.9	20
12	Mapping of arsenic pollution with reference to paddy cultivation in the middle Indo-Gangetic Plains. Environmental Monitoring and Assessment, 2015, 187, 198.	2.7	19
13	Alleviative mechanisms of silicon solubilizing Bacillus amyloliquefaciens mediated diminution of arsenic toxicity in rice. Journal of Hazardous Materials, 2022, 428, 128170.	12.4	19
14	Yeast strain Debaryomyces hansenii for amelioration of arsenic stress in rice. Ecotoxicology and Environmental Safety, 2020, 195, 110480.	6.0	16
15	Synergistic action of Trichoderma koningiopsis and T. asperellum mitigates salt stress in paddy. Physiology and Molecular Biology of Plants, 2022, 28, 987-1004.	3.1	6
16	Longâ€term changes in the floristic composition and soil characteristics of reclaimed sodic land during ecoâ€restoration. Journal of Plant Nutrition and Soil Science, 2011, 174, 93-102.	1.9	5
17	Feasibility Study ofPhragmites karkaandChristella dentataGrown in West Bengal as Arsenic Accumulator. International Journal of Phytoremediation, 2015, 17, 869-878.	3.1	4
18	Trichoderma primed rice straw alters structural and functional properties of sodic soil. Land Degradation and Development, 0, , .	3.9	4

#	Article	IF	CITATIONS
19	Organic Amendments with Plant-Growth-Promoting Fungi Support Paddy Cultivation in Sodic Soil. Communications in Soil Science and Plant Analysis, 2015, 46, 2332-2341.	1.4	2
20	Mycoremediation- Effective strategy to ameliorate arsenic toxicity. , 2021, , 433-458.		2
21	Application of selected nutrient amendments to regulate soil properties for reducing arsenic accumulation in rice. Soil and Sediment Contamination, 2023, 32, 147-163.	1.9	2