Michael E Konkel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6678311/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Campylobacter jejuni CiaD effector co-opts the host cell protein IQGAP1 to promote cell entry. Nature Communications, 2021, 12, 1339.	12.8	10
2	Antimicrobial Resistance Gene Transfer from Campylobacter jejuni in Mono- and Dual-Species Biofilms. Applied and Environmental Microbiology, 2021, 87, e0065921.	3.1	12
3	Inhibitory Effect of Puroindoline Peptides on Campylobacter jejuni Growth and Biofilm Formation. Frontiers in Microbiology, 2021, 12, 702762.	3.5	10
4	Campylobacter jejuni Triggers Signaling through Host Cell Focal Adhesions To Inhibit Cell Motility. MBio, 2021, 12, e0149421.	4.1	1
5	Active Packaging of Immobilized Zinc Oxide Nanoparticles Controls Campylobacter jejuni in Raw Chicken Meat. Applied and Environmental Microbiology, 2020, 86, .	3.1	28
6	A porcine ligated loop model reveals new insight into the host immune response against <i>Campylobacter jejuni</i> . Gut Microbes, 2020, 12, 1814121.	9.8	7
7	Molecular Dissection of the Campylobacter jejuni CadF and FlpA Virulence Proteins in Binding to Host Cell Fibronectin. Microorganisms, 2020, 8, 389.	3.6	22
8	Taking Control: Campylobacter jejuni Binding to Fibronectin Sets the Stage for Cellular Adherence and Invasion. Frontiers in Microbiology, 2020, 11, 564.	3.5	22
9	A Novel Mathematical Model for Studying Antimicrobial Interactions Against Campylobacter jejuni. Frontiers in Microbiology, 2019, 10, 1038.	3.5	7
10	Campylobacter jejuni Demonstrates Conserved Proteomic and Transcriptomic Responses When Co-cultured With Human INT 407 and Caco-2 Epithelial Cells. Frontiers in Microbiology, 2019, 10, 755.	3.5	19
11	Environmental Stress-Induced Bacterial Lysis and Extracellular DNA Release Contribute to Campylobacter jejuni Biofilm Formation. Applied and Environmental Microbiology, 2018, 84, .	3.1	32
12	Whole Transcriptome Sequencing Analysis of the Synergistic Antimicrobial Effect of Metal Oxide Nanoparticles and Ajoene on Campylobacter jejuni. Frontiers in Microbiology, 2018, 9, 2074.	3.5	10
13	MPLEx: a method for simultaneous pathogen inactivation and extraction of samples for multi-omics profiling. Analyst, The, 2017, 142, 442-448.	3.5	43
14	The food-borne pathogen Campylobacter jejuni depends on the AddAB DNA repair system to defend against bile in the intestinal environment. Scientific Reports, 2017, 7, 14777.	3.3	25
15	The food-borne pathogen Campylobacter jejuni responds to the bile salt deoxycholate with countermeasures to reactive oxygen species. Scientific Reports, 2017, 7, 15455.	3.3	27
16	Methods to Study Campylobacter jejuni Adherence to and Invasion of Host Epithelial Cells. Methods in Molecular Biology, 2017, 1512, 117-127.	0.9	12
17	Energyâ€́dense diet triggers changes in gut microbiota, reorganization of gutâ€́brain vagal communication and increases body fat accumulation. Acta Neurobiologiae Experimentalis, 2017, 77, 18-30.	0.7	119
18	Analysis of the Campylobacter jejuni Genome by SMRT DNA Sequencing Identifies Restriction-Modification Motifs. PLoS ONE, 2015, 10, e0118533.	2.5	20

#	Article	IF	CITATIONS
19	The Intestinal Microbiota Influences Campylobacter jejuni Colonization and Extraintestinal Dissemination in Mice. Applied and Environmental Microbiology, 2015, 81, 4642-4650.	3.1	45
20	Reducing Campylobacter jejuni Colonization of Poultry via Vaccination. PLoS ONE, 2014, 9, e114254.	2.5	66
21	Investigating the Responses of Cronobacter sakazakii to Garlic-Drived Organosulfur Compounds: a Systematic Study of Pathogenic-Bacterium Injury by Use of High-Throughput Whole-Transcriptome Sequencing and Confocal Micro-Raman Spectroscopy. Applied and Environmental Microbiology, 2014, 80. 959-971.	3.1	31
22	The focal complex of epithelial cells provides a signalling platform for interleukin-8 induction in response to bacterial pathogens. Cellular Microbiology, 2014, 16, 1441-1455.	2.1	20
23	Campylobacter jejuni Secretes Proteins via the Flagellar Type III Secretion System That Contribute to Host Cell Invasion and Gastroenteritis. , 2014, , 315-332.		16
24	Invasion of epithelial cells by Campylobacter jejuni is independent of caveolae. Cell Communication and Signaling, 2013, 11, 100.	6.5	24
25	Capsaicin-sensitive vagal afferent neurons contribute to the detection of pathogenic bacterial colonization in the gut. Journal of Neuroimmunology, 2013, 257, 36-45.	2.3	22
26	Detecting and Tracking Nosocomial Methicillin-Resistant <i>Staphylococcus aureus</i> Using a Microfluidic SERS Biosensor. Analytical Chemistry, 2013, 85, 2320-2327.	6.5	110
27	The fibronectin-binding motif within FlpA facilitates <i>Campylobacter jejuni</i> adherence to host cell signaling. Emerging Microbes and Infections, 2013, 2, 1-12.	6.5	31
28	The Campylobacter jejuniCiaD effector protein activates MAP kinase signaling pathways and is required for the development of disease. Cell Communication and Signaling, 2013, 11, 79.	6.5	53
29	Serine phosphorylation of cortactin is required for maximal host cell invasion by Campylobacter jejuni. Cell Communication and Signaling, 2013, 11, 82.	6.5	24
30	Antimicrobial effect of diallyl sulphide on Campylobacter jejuni biofilms. Journal of Antimicrobial Chemotherapy, 2012, 67, 1915-1926.	3.0	46
31	Identification of Potential Type III Secretion Proteins via Heterologous Expression of Vibrio parahaemolyticus DNA. Applied and Environmental Microbiology, 2012, 78, 3492-3494.	3.1	11
32	Comprehensive Detection and Discrimination of Campylobacter Species by Use of Confocal Micro-Raman Spectroscopy and Multilocus Sequence Typing. Journal of Clinical Microbiology, 2012, 50, 2932-2946.	3.9	31
33	The Campylobacter jejuni CiaC virulence protein is secreted from the flagellum and delivered to the cytosol of host cells. Frontiers in Cellular and Infection Microbiology, 2012, 2, 31.	3.9	87
34	Quantification of the relative roles of niche and neutral processes in structuring gastrointestinal microbiomes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9692-9698.	7.1	133
35	The cooperative action of bacterial fibronectin-binding proteins and secreted proteins promote maximal Campylobacter jejuni invasion of host cells by stimulating membrane ruffling. Cellular Microbiology, 2012, 14, 226-238.	2.1	105
36	Examination of nanoparticle inactivation of Campylobacter jejuni biofilms using infrared and Raman spectroscopies. Journal of Applied Microbiology, 2012, 113, 952-963.	3.1	23

#	Article	IF	CITATIONS
37	Production of Organic Acids by Probiotic Lactobacilli Can Be Used to Reduce Pathogen Load in Poultry. PLoS ONE, 2012, 7, e43928.	2.5	178
38	Investigating Antibacterial Effects of Garlic (Allium sativum) Concentrate and Garlic-Derived Organosulfur Compounds on Campylobacter jejuni by Using Fourier Transform Infrared Spectroscopy, Raman Spectroscopy, and Electron Microscopy. Applied and Environmental Microbiology, 2011, 77, 5257-5269.	3.1	107
39	Infrared and Raman Spectroscopic Studies of the Antimicrobial Effects of Garlic Concentrates and Diallyl Constituents on Foodborne Pathogens. Analytical Chemistry, 2011, 83, 4137-4146.	6.5	48
40	<i>Campylobacter jejuni</i> survival within human epithelial cells is enhanced by the secreted protein Cial. Molecular Microbiology, 2011, 80, 1296-1312.	2.5	69
41	Aminoâ€ŧerminal residues dictate the export efficiency of the <i>Campylobacter jejuni</i> filament proteins via the flagellum. Molecular Microbiology, 2010, 76, 918-931.	2.5	28
42	Robust Computational Analysis of rRNA Hypervariable Tag Datasets. PLoS ONE, 2010, 5, e15220.	2.5	15
43	<i>Campylobacter jejuni</i> FlpA Binds Fibronectin and Is Required for Maximal Host Cell Adherence. Journal of Bacteriology, 2010, 192, 68-76.	2.2	104
44	Vp1659 Is a <i>Vibrio parahaemolyticus</i> Type III Secretion System 1 Protein That Contributes to Translocation of Effector Proteins Needed To Induce Cytolysis, Autophagy, and Disruption of Actin Structure in HeLa Cells. Journal of Bacteriology, 2010, 192, 3491-3502.	2.2	28
45	Regulation of type III secretion system 1 gene expression in <i>Vibrio parahaemolyticus</i> is dependent on interactions between ExsA, ExsC, and ExsD. Virulence, 2010, 1, 260-272.	4.4	44
46	Examination of <i>Campylobacter jejuni</i> Putative Adhesins Leads to the Identification of a New Protein, Designated FlpA, Required for Chicken Colonization. Infection and Immunity, 2009, 77, 2399-2407.	2.2	132
47	Type III secretion system 1 of Vibrio parahaemolyticus induces oncosis in both epithelial and monocytic cell lines. Microbiology (United Kingdom), 2009, 155, 837-851.	1.8	42
48	Hsp27 is persistently expressed in zebrafish skeletal and cardiac muscle tissues but dispensable for their morphogenesis. Cell Stress and Chaperones, 2009, 14, 521-533.	2.9	23
49	Analysis of the Pan Genome of Campylobacter jejuni Isolates Recovered from Poultry by Pulsed-Field Gel Electrophoresis, Multilocus Sequence Typing (MLST), and Repetitive Sequence Polymerase Chain Reaction (rep-PCR) Reveals Different Discriminatory Capabilities. Microbial Ecology, 2009, 58, 843-855.	2.8	31
50	Identification of a <i>Campylobacter jejuni</i> â€secreted protein required for maximal invasion of host cells. Molecular Microbiology, 2009, 73, 650-662.	2.5	101
51	Comparative studies of Campylobacter jejuni genomic diversity reveal the importance of core and dispensable genes in the biology of this enigmatic food-borne pathogen. Current Opinion in Biotechnology, 2009, 20, 158-165.	6.6	19
52	Type III secretion system 1 genes in <i>Vibrio parahaemolyticus</i> are positively regulated by ExsA and negatively regulated by ExsD. Molecular Microbiology, 2008, 69, 747-764.	2.5	81
53	Campylobacter jejuni invade chicken LMH cells inefficiently and stimulate differential expression of the chicken CXCLi1 and CXCLi2 cytokines. Microbiology (United Kingdom), 2008, 154, 3835-3847.	1.8	54
54	Identification of Campylobacter jejuni Proteins Recognized by Maternal Antibodies of Chickens. Applied and Environmental Microbiology, 2008, 74, 6867-6875.	3.1	65

#	Article	IF	CITATIONS
55	Culture of <i>Campylobacter jejuni</i> with Sodium Deoxycholate Induces Virulence Gene Expression. Journal of Bacteriology, 2008, 190, 2286-2297.	2.2	110
56	Comparative Metagenomics Reveals Host Specific Metavirulomes and Horizontal Gene Transfer Elements in the Chicken Cecum Microbiome. PLoS ONE, 2008, 3, e2945.	2.5	247
57	Campylobacter jejuni Strains Compete for Colonization in Broiler Chicks. Applied and Environmental Microbiology, 2007, 73, 2297-2305.	3.1	47
58	Greater Diversity of Shiga Toxin-Encoding Bacteriophage Insertion Sites among Escherichia coli O157:H7 Isolates from Cattle than in Those from Humans. Applied and Environmental Microbiology, 2007, 73, 671-679.	3.1	117
59	Characterization of Genetically Matched Isolates of Campylobacter jejuni Reveals that Mutations in Genes Involved in Flagellar Biosynthesis Alter the Organism's Virulence Potential. Applied and Environmental Microbiology, 2007, 73, 3123-3136.	3.1	51
60	Chromosomal His-tagging: An alternative approach to membrane protein purification. Proteomics, 2007, 7, 399-402.	2.2	3
61	Role of the small Rho GTPases Rac1 and Cdc42 in host cell invasion of Campylobacter jejuni. Cellular Microbiology, 2007, 9, 2431-2444.	2.1	104
62	Expression patterns and role of the CadF protein inCampylobacter jejuniandCampylobacter coli. FEMS Microbiology Letters, 2007, 274, 9-16.	1.8	51
63	Expression and purification of native and truncated forms of CadF, an outer membrane protein of Campylobacter. International Journal of Biological Macromolecules, 2006, 39, 135-140.	7.5	15
64	Identification of a fibronectin-binding domain within the Campylobacter jejuni CadF protein. Molecular Microbiology, 2005, 57, 1022-1035.	2.5	92
65	The Campylobacter jejuni Response Regulator, CbrR, Modulates Sodium Deoxycholate Resistance and Chicken Colonization. Journal of Bacteriology, 2005, 187, 3662-3670.	2.2	81
66	Secretion of Virulence Proteins from Campylobacter jejuni Is Dependent on a Functional Flagellar Export Apparatus. Journal of Bacteriology, 2004, 186, 3296-3303.	2.2	302
67	Campylobacter jejuni infection of differentiated THP-1 macrophages results in interleukin 1β release and caspase-1-independent apoptosis. Microbiology (United Kingdom), 2004, 150, 561-569.	1.8	34
68	Differentiation of Campylobacter coli , Campylobacter jejuni , Campylobacter lari , and Campylobacter upsaliensis by a Multiplex PCR Developed from the Nucleotide Sequence of the Lipid A Gene lpxA. Journal of Clinical Microbiology, 2004, 42, 5549-5557.	3.9	170
69	Maximal adherence and invasion of INT 407 cells by Campylobacter jejuni requires the CadF outer-membrane protein and microfilament reorganization. Microbiology (United Kingdom), 2003, 149, 153-165.	1.8	213
70	In Vivo Tracking of Campylobacter jejuni by Using a Novel Recombinant Expressing Green Fluorescent Protein. Applied and Environmental Microbiology, 2003, 69, 2864-2874.	3.1	24
71	Fibronectin-Facilitated Invasion of T84 Eukaryotic Cells by Campylobacter jejuni Occurs Preferentially at the Basolateral Cell Surface. Infection and Immunity, 2002, 70, 6665-6671.	2.2	96
72	Role of Campylobacter jejuni Potential Virulence Genes in Cecal Colonization. Avian Diseases, 2001, 45, 549.	1.0	131

#	Article	IF	CITATIONS
73	Temperature-regulated expression of bacterial virulence genes. Microbes and Infection, 2000, 2, 157-166.	1.9	220
74	Identification of DT104 and U302 Phage Types amongSalmonella enterica Serotype Typhimurium Isolates by PCR. Journal of Clinical Microbiology, 2000, 38, 3484-3488.	3.9	69
75	The Absence of Cecal Colonization of Chicks by a Mutant of Campylobacter jejuni Not Expressing Bacterial Fibronectin-Binding Protein. Avian Diseases, 1999, 43, 586.	1.0	132
76	Bacterial secreted proteins are required for the internalization of Campylobacter jejuni into cultured mammalian cells. Molecular Microbiology, 1999, 32, 691-701.	2.5	238
77	Identification of Proteins Required for the Internalization of Campylobacter Jejuni into Cultured Mammalian Cells. Advances in Experimental Medicine and Biology, 1999, 473, 215-224.	1.6	43
78	Secretion of Campylobacter Jejuni Cia Proteins is Contact Dependent. Advances in Experimental Medicine and Biology, 1999, 473, 225-229.	1.6	27
79	Identification of the Enteropathogens <i>Campylobacter jejuni</i> and <i>Campylobacter coli</i> Based on the <i>cadF</i> Virulence Gene and Its Product. Journal of Clinical Microbiology, 1999, 37, 510-517.	3.9	194
80	Cloning, sequencing, and characterization of the lipopolysaccharide biosynthetic enzyme heptosyltransferase I gene (waaC) from Campylobacter jejuni and Campylobacter coli. Gene, 1998, 222, 177-185.	2.2	30
81	Characterization of the Thermal Stress Response of <i>Campylobacter jejuni</i> . Infection and Immunity, 1998, 66, 3666-3672.	2.2	119
82	Identification of a functional homolog of the Escherichia coli and Salmonella typhimurium cysM gene encoding O-acetylserine sulfhydrylase B in Campylobacter jejuni. Gene, 1997, 185, 63-67.	2.2	17
83	Identification and molecular cloning of a gene encoding a fibronectinâ€binding protein (CadF) from Campylobacter jejuni. Molecular Microbiology, 1997, 24, 953-963.	2.5	290
84	Molecular Pathogenesis of Campylobacter jejuni Enteritis. Infectious Agents and Pathogenesis, 1996, , 133-147.	0.1	2
85	Role of a potential endoplasmic reticulum retention sequence (RDEL) and the Golgi complex in the cytotonic activity of Escherichia coli heat-labile enterotoxin. Molecular Microbiology, 1995, 16, 789-800.	2.5	39
86	Identification and characterization of an intervening sequence within the 23S ribosomal RNA genes of Campylobacter jejuni. Molecular Microbiology, 1994, 14, 235-241.	2.5	35
87	Cloning and expression of the hup gene encoding a histone-like protein of Campylobacter jejuni. Gene, 1994, 146, 83-86.	2.2	13
88	Characteristics of the internalization and intracellular survival of Campylobacter jejuni in human epithelial cell cultures. Microbial Pathogenesis, 1992, 13, 357-370.	2.9	91
89	Invasion-Related Antigens of Campylobacter jejuni. Journal of Infectious Diseases, 1990, 162, 888-895.	4.0	36