
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6678236/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | HUMAN IMPACTS HAVE SHAPED HISTORICAL AND RECENT EVOLUTION IN <i>AEDES AEGYPTI </i> , THE DENGUE AND YELLOW FEVER MOSQUITO. Evolution; International Journal of Organic Evolution, 2014, 68, 514-525.                                             | 2.3 | 225       |
| 2  | Mitochondrial DNA from Hemlock Woolly Adelgid (Hemiptera: Adelgidae) Suggests Cryptic Speciation<br>and Pinpoints the Source of the Introduction to Eastern North America. Annals of the Entomological<br>Society of America, 2006, 99, 195-203. | 2.5 | 194       |
| 3  | Colonization and diversification of Galápagos terrestrial fauna: a phylogenetic and biogeographical<br>synthesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 3347-3361.                                  | 4.0 | 167       |
| 4  | PHYLOGEOGRAPHY AND HISTORY OF GIANT GALAPAGOS TORTOISES. Evolution; International Journal of Organic Evolution, 2002, 56, 2052-2066.                                                                                                             | 2.3 | 128       |
| 5  | Global population divergence and admixture of the brown rat ( <i>Rattus norvegicus</i> ).<br>Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161762.                                                                       | 2.6 | 119       |
| 6  | Independent evolutionary origins of landlocked alewife populations and rapid parallel evolution of phenotypic traits. Molecular Ecology, 2008, 17, 582-597.                                                                                      | 3.9 | 118       |
| 7  | Multiple Origins of Knockdown Resistance Mutations in the Afrotropical Mosquito Vector Anopheles<br>gambiae. PLoS ONE, 2007, 2, e1243.                                                                                                           | 2.5 | 108       |
| 8  | MOLECULAR BIOGEOGRAPHY OF CAVE LIFE: A STUDY USING MITOCHONDRIAL DNA FROM BATHYSCIINE BEETLES. Evolution; International Journal of Organic Evolution, 2001, 55, 122-130.                                                                         | 2.3 | 99        |
| 9  | Analysis of Multiple Tsetse Fly Populations in Uganda Reveals Limited Diversity and Species-Specific Gut<br>Microbiota. Applied and Environmental Microbiology, 2014, 80, 4301-4312.                                                             | 3.1 | 95        |
| 10 | Population genomics of the Asian tiger mosquito, <i>Aedes albopictus</i> : insights into the recent worldwide invasion. Ecology and Evolution, 2017, 7, 10143-10157.                                                                             | 1.9 | 89        |
| 11 | Microsatellite analysis of genetic divergence among populations of giant Galápagos tortoises.<br>Molecular Ecology, 2008, 11, 2265-2283.                                                                                                         | 3.9 | 88        |
| 12 | Unravelling the peculiarities of island life: vicariance, dispersal and the diversification of the extinct and extant giant Galápagos tortoises. Molecular Ecology, 2012, 21, 160-173.                                                           | 3.9 | 88        |
| 13 | Phylogeography and Taxonomy of Trypanosoma brucei. PLoS Neglected Tropical Diseases, 2011, 5, e961.                                                                                                                                              | 3.0 | 84        |
| 14 | Historical DNA analysis reveals living descendants of an extinct species of Galápagos tortoise.<br>Proceedings of the National Academy of Sciences of the United States of America, 2008, 105,<br>15464-15469.                                   | 7.1 | 79        |
| 15 | Giant tortoise genomes provide insights into longevity and age-related disease. Nature Ecology and Evolution, 2019, 3, 87-95.                                                                                                                    | 7.8 | 79        |
| 16 | Tracking the return of Aedes aegypti to Brazil, the major vector of the dengue, chikungunya and Zika<br>viruses. PLoS Neglected Tropical Diseases, 2017, 11, e0005653.                                                                           | 3.0 | 77        |
| 17 | Title is missing!. Conservation Genetics, 2003, 4, 31-46.                                                                                                                                                                                        | 1.5 | 75        |
| 18 | Patterns of association between Symbiodinium and members of the Montastraea annularis species<br>complex on spatial scales ranging from within colonies to between geographic regions. Coral Reefs,<br>2006, 25, 503-512.                        | 2.2 | 72        |

| #  | Article                                                                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Hybridization between a native and introduced predator of Adelgidae: An unintended result of classical biological control. Biological Control, 2012, 63, 359-369.                                              | 3.0  | 72        |
| 20 | A cryptic taxon of Galápagos tortoise in conservation peril. Biology Letters, 2005, 1, 287-290.                                                                                                                | 2.3  | 71        |
| 21 | Giant tortoises are not so slow: Rapid diversification and biogeographic consensus in the Galapagos.<br>Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6514-6519. | 7.1  | 70        |
| 22 | Genes Record a Prehistoric Volcano Eruption in the Galapagos. Science, 2003, 302, 75-75.                                                                                                                       | 12.6 | 69        |
| 23 | Editing nature: Local roots of global governance. Science, 2018, 362, 527-529.                                                                                                                                 | 12.6 | 67        |
| 24 | Improved reference genome of the arboviral vector Aedes albopictus. Genome Biology, 2020, 21, 215.                                                                                                             | 8.8  | 65        |
| 25 | Ancient and modern colonization of North America by hemlock woolly adelgid, <i>Adelges tsugae</i> (Hemiptera: Adelgidae), an invasive insect from East Asia. Molecular Ecology, 2016, 25, 2065-2080.           | 3.9  | 64        |
| 26 | Lineage fusion in <scp>G</scp> alápagos giant tortoises. Molecular Ecology, 2014, 23, 5276-5290.                                                                                                               | 3.9  | 59        |
| 27 | Extreme difference in rate of mitochondrial and nuclear DNA evolution in a large ectotherm,<br>Galápagos tortoises. Molecular Phylogenetics and Evolution, 2004, 31, 794-798.                                  | 2.7  | 58        |
| 28 | Description of a New Galapagos Giant Tortoise Species (Chelonoidis; Testudines: Testudinidae) from<br>Cerro Fatal on Santa Cruz Island. PLoS ONE, 2015, 10, e0138779.                                          | 2.5  | 54        |
| 29 | Urban population genetics of slumâ€dwelling rats ( <i><scp>R</scp>attus norvegicus</i> ) in<br><scp>S</scp> alvador, <scp>B</scp> razil. Molecular Ecology, 2013, 22, 5056-5070.                               | 3.9  | 52        |
| 30 | Hybridization masks speciation in the evolutionary history of the Galápagos marine iguana.<br>Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150425.                                    | 2.6  | 52        |
| 31 | Genetic analysis of a successful repatriation programme: giant Galápagos tortoises. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 341-345.                                               | 2.6  | 51        |
| 32 | Trypanosoma brucei gambiense Group 1 Is Distinguished by a Unique Amino Acid Substitution in the<br>HpHb Receptor Implicated in Human Serum Resistance. PLoS Neglected Tropical Diseases, 2012, 6, e1728.      | 3.0  | 50        |
| 33 | Lonesome George is not alone among Galápagos tortoises. Current Biology, 2007, 17, R317-R318.                                                                                                                  | 3.9  | 49        |
| 34 | Urban rat races: spatial population genomics of brown rats ( <i>Rattus norvegicus</i> ) compared<br>across multiple cities. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180245.      | 2.6  | 48        |
| 35 | Glossina fuscipes populations provide insights for human African trypanosomiasis transmission in<br>Uganda. Trends in Parasitology, 2013, 29, 394-406.                                                         | 3.3  | 47        |
| 36 | Genetic rediscovery of an â€~extinct' Galápagos giant tortoise species. Current Biology, 2012, 22, R10-R11.                                                                                                    | 3.9  | 46        |

3

| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Implications of Microfauna-Host Interactions for Trypanosome Transmission Dynamics in Glossina fuscipes in Uganda. Applied and Environmental Microbiology, 2012, 78, 4627-4637.                            | 3.1 | 45        |
| 38 | Phylogeography and Population Structure of Glossina fuscipes fuscipes in Uganda: Implications for Control of Tsetse. PLoS Neglected Tropical Diseases, 2010, 4, e636.                                      | 3.0 | 44        |
| 39 | Using fineâ€scale spatial genetics of Norway rats to improve control efforts and reduce leptospirosis risk in urban slum environments. Evolutionary Applications, 2017, 10, 323-337.                       | 3.1 | 43        |
| 40 | Recovery of a nearly extinct <scp>G</scp> alápagos tortoise despite minimal genetic variation.<br>Evolutionary Applications, 2013, 6, 377-383.                                                             | 3.1 | 42        |
| 41 | Phylogeographic History and Gene Flow Among Giant GalaÌpagos Tortoises on Southern Isabela Island.<br>Genetics, 2006, 172, 1727-1744.                                                                      | 2.9 | 40        |
| 42 | Evolution of kdr haplotypes in worldwide populations of Aedes aegypti: Independent origins of the F1534C kdr mutation. PLoS Neglected Tropical Diseases, 2020, 14, e0008219.                               | 3.0 | 40        |
| 43 | The genetic legacy of Lonesome George survives: Giant tortoises with Pinta Island ancestry identified in Galápagos. Biological Conservation, 2013, 157, 225-228.                                           | 4.1 | 39        |
| 44 | Comparative Genomics Reveals Multiple Genetic Backgrounds of Human Pathogenicity in the Trypanosoma brucei Complex. Genome Biology and Evolution, 2014, 6, 2811-2819.                                      | 2.5 | 39        |
| 45 | Genomic insights into the ancient spread of Lyme disease across North America. Nature Ecology and Evolution, 2017, 1, 1569-1576.                                                                           | 7.8 | 39        |
| 46 | Permanent Genetic Resources added to Molecular Ecology Resources Database 1 December 2010–31<br>January 2011. Molecular Ecology Resources, 2011, 11, 586-589.                                              | 4.8 | 38        |
| 47 | Whole genome capture of vector-borne pathogens from mixed DNA samples: a case study of Borrelia burgdorferi. BMC Genomics, 2015, 16, 434.                                                                  | 2.8 | 38        |
| 48 | Potential genetic consequences of a recent bottleneck in the Amur tiger of. Conservation Genetics, 2004, 5, 707-713.                                                                                       | 1.5 | 36        |
| 49 | DNA from the Past Informs Ex Situ Conservation for the Future: An "Extinct―Species of GalÃįpagos<br>Tortoise Identified in Captivity. PLoS ONE, 2010, 5, e8683.                                            | 2.5 | 36        |
| 50 | High Levels of Genetic Differentiation between Ugandan Glossina fuscipes fuscipes Populations<br>Separated by Lake Kyoga. PLoS Neglected Tropical Diseases, 2008, 2, e242.                                 | 3.0 | 35        |
| 51 | Genetic Markers of Benzimidazole Resistance among Human Hookworms (Necator americanus) in<br>Kintampo North Municipality, Ghana. American Journal of Tropical Medicine and Hygiene, 2019, 100,<br>351-356. | 1.4 | 35        |
| 52 | Morphometrics Parallel Genetics in a Newly Discovered and Endangered Taxon of Galápagos Tortoise.<br>PLoS ONE, 2009, 4, e6272.                                                                             | 2.5 | 34        |
| 53 | Patterns, Mechanisms and Genetics of Speciation in Reptiles and Amphibians. Genes, 2019, 10, 646.                                                                                                          | 2.4 | 33        |
| 54 | Using digital images to reconstruct three-dimensional biological forms: a new tool for morphological studies. Biological Journal of the Linnean Society, 0, 95, 425-436.                                   | 1.6 | 32        |

| #  | Article                                                                                                                                                                                                                           | IF               | CITATIONS           |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------|
| 55 | Genetic diversity and population structure of Glossina pallidipes in Uganda and western Kenya.<br>Parasites and Vectors, 2011, 4, 122.                                                                                            | 2.5              | 32                  |
| 56 | Multiple Origins of Cytologically Identical Chromosome Inversions in the Anopheles gambiae<br>Complex. Genetics, 1998, 150, 807-814.                                                                                              | 2.9              | 31                  |
| 57 | Population genomics through time provides insights into the consequences of decline and rapid<br>demographic recovery through headâ€starting in a Galapagos giant tortoise. Evolutionary Applications,<br>2018, 11, 1811-1821.    | 3.1              | 29                  |
| 58 | The origin of captive Galápagos tortoises based on DNA analysis: implications for the management of natural populations. Animal Conservation, 2003, 6, 329-337.                                                                   | 2.9              | 28                  |
| 59 | Naturally rare versus newly rare: demographic inferences on two timescales inform conservation of Galápagos giant tortoises. Ecology and Evolution, 2015, 5, 676-694.                                                             | 1.9              | 28                  |
| 60 | Theory, practice, and conservation in the age of genomics: The Galápagos giant tortoise as a case study. Evolutionary Applications, 2018, 11, 1084-1093.                                                                          | 3.1              | 28                  |
| 61 | Vectors as Epidemiological Sentinels: Patterns of Within-Tick Borrelia burgdorferi Diversity. PLoS<br>Pathogens, 2016, 12, e1005759.                                                                                              | 4.7              | 28                  |
| 62 | Temporal stability of Glossina fuscipes fuscipes populations in Uganda. Parasites and Vectors, 2011, 4, 19.                                                                                                                       | 2.5              | 27                  |
| 63 | The population structure of Glossina fuscipes fuscipes in the Lake Victoria basin in Uganda:<br>implications for vector control. Parasites and Vectors, 2012, 5, 222.                                                             | 2.5              | 27                  |
| 64 | Identification of Genetically Important Individuals of the Rediscovered Floreana Galápagos Giant<br>Tortoise (Chelonoidis elephantopus) Provides Founders for Species Restoration Program. Scientific<br>Reports, 2017, 7, 11471. | 3.3              | 27                  |
| 65 | Self-righting potential and the evolution of shell shape in Galápagos tortoises. Scientific Reports, 2017, 7, 15828.                                                                                                              | 3.3              | 27                  |
| 66 | Multiple evolutionary origins of Trypanosoma evansi in Kenya. PLoS Neglected Tropical Diseases, 2017,<br>11, e0005895.                                                                                                            | 3.0              | 27                  |
| 67 | A machine-learning approach to map landscape connectivity in <i>Aedes aegypti</i> with genetic and environmental data. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .              | 7.1              | 27                  |
| 68 | Genetic diversity and population structure of the tsetse fly Glossina fuscipes fuscipes (Diptera:) Tj ETQq0 0 0 rgBT 2017, 11, e0005485.                                                                                          | /Overlock<br>3.0 | 2 10 Tf 50 22<br>26 |
| 69 | Wolbachia association with the tsetse fly, Glossina fuscipes fuscipes, reveals high levels of genetic diversity and complex evolutionary dynamics. BMC Evolutionary Biology, 2013, 13, 31.                                        | 3.2              | 25                  |
| 70 | Genetic Diversity and Population Structure of Trypanosoma brucei in Uganda: Implications for the<br>Epidemiology of Sleeping Sickness and Nagana. PLoS Neglected Tropical Diseases, 2015, 9, e0003353.                            | 3.0              | 25                  |
| 71 | Complex interplay of evolutionary forces shaping population genomic structure of invasive Aedes albopictus in southern Europe. PLoS Neglected Tropical Diseases, 2019, 13, e0007554.                                              | 3.0              | 25                  |
| 72 | Giant Galápagos tortoises; molecular genetic analyses identify a trans-island hybrid in a repatriation<br>program of an endangered taxon. BMC Ecology, 2007, 7, 2.                                                                | 3.0              | 22                  |

| #  | Article                                                                                                                                                                                                            | IF               | CITATIONS         |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------|
| 73 | Comparative genomics of drug resistance in Trypanosoma brucei rhodesiense. Cellular and Molecular<br>Life Sciences, 2016, 73, 3387-3400.                                                                           | 5.4              | 22                |
| 74 | Genome-Wide Assessment of Diversity and Divergence Among Extant Galapagos Giant Tortoise Species.<br>Journal of Heredity, 2018, 109, 611-619.                                                                      | 2.4              | 22                |
| 75 | Spatio-temporal distribution of Spiroplasma infections in the tsetse fly (Glossina fuscipes fuscipes) in northern Uganda. PLoS Neglected Tropical Diseases, 2019, 13, e0007340.                                    | 3.0              | 22                |
| 76 | Development of new microsatellite loci and evaluation of loci from other pinniped species for the<br>Galápagos sea lion (Zalophus californianus wollebaeki). Conservation Genetics, 2006, 7, 461-465.              | 1.5              | 21                |
| 77 | De Novo Genome Assembly Shows Genome Wide Similarity between Trypanosoma brucei brucei and<br>Trypanosoma brucei rhodesiense. PLoS ONE, 2016, 11, e0147660.                                                        | 2.5              | 21                |
| 78 | Cryptic east-west divergence and molecular diagnostics for two species of silver flies (Diptera:) Tj ETQq0 0 0 rgBT woolly adelgid. Biological Control, 2018, 121, 23-29.                                          | /Overlock<br>3.0 | 10 Tf 50 54<br>20 |
| 79 | Characterization of di-, tri- and tetranucleotide microsatellite markers with perfect repeats for Trypanosoma brucei and related species. Molecular Ecology Notes, 2006, 6, 508-510.                               | 1.7              | 19                |
| 80 | Genetics of a head-start program to guide conservation of an endangered Galápagos tortoise<br>(Chelonoidis ephippium). Conservation Genetics, 2015, 16, 823-832.                                                   | 1.5              | 18                |
| 81 | Genetically informed captive breeding of hybrids of an extinct species of Galapagos tortoise.<br>Conservation Biology, 2019, 33, 1404-1414.                                                                        | 4.7              | 18                |
| 82 | Genetically DistinctGlossina fuscipes fuscipesPopulations in the Lake Kyoga Region of Uganda and Its<br>Relevance for Human African Trypanosomiasis. BioMed Research International, 2013, 2013, 1-12.              | 1.9              | 17                |
| 83 | I-HEDGE: determining the optimum complementary sets of taxa for conservation using evolutionary isolation. PeerJ, 2016, 4, e2350.                                                                                  | 2.0              | 17                |
| 84 | Lineage Identification and Genealogical Relationships Among Captive Galápagos Tortoises. Zoo<br>Biology, 2012, 31, 107-120.                                                                                        | 1.2              | 16                |
| 85 | Babesia microti from humans and ticks hold a genomic signature of strong population structure in the United States. BMC Genomics, 2016, 17, 888.                                                                   | 2.8              | 15                |
| 86 | Temporal genetic differentiation in Glossina pallidipes tsetse fly populations in Kenya. Parasites and<br>Vectors, 2017, 10, 471.                                                                                  | 2.5              | 14                |
| 87 | Colonization history of Galapagos giant tortoises: Insights from mitogenomes support the progression rule. Journal of Zoological Systematics and Evolutionary Research, 2020, 58, 1262-1275.                       | 1.4              | 14                |
| 88 | Evidence of temporal stability in allelic and mitochondrial haplotype diversity in populations of<br>Glossina fuscipes fuscipes (Diptera: Glossinidae) in northern Uganda. Parasites and Vectors, 2016, 9,<br>258. | 2.5              | 13                |
| 89 | Multiple Paternity in the Norway Rat, <i>Rattus norvegicus</i> , from Urban Slums in Salvador, Brazil.<br>Journal of Heredity, 2016, 107, 181-186.                                                                 | 2.4              | 13                |
| 90 | Genomic analyses of African Trypanozoon strains to assess evolutionary relationships and identify markers for strain identification. PLoS Neglected Tropical Diseases, 2017, 11, e0005949.                         | 3.0              | 13                |

| #   | Article                                                                                                                                                                                                                        | IF              | CITATIONS       |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|
| 91  | Patterns of Genome-Wide Variation in Glossina fuscipes fuscipes Tsetse Flies from Uganda. G3: Genes,<br>Genomes, Genetics, 2016, 6, 1573-1584.                                                                                 | 1.8             | 12              |
| 92  | Whole genome sequencing shows sleeping sickness relapse is due to parasite regrowth and not reinfection. Evolutionary Applications, 2016, 9, 381-393.                                                                          | 3.1             | 12              |
| 93  | Temporal Mitogenomics of the Galapagos Giant Tortoise from Pinzón Reveals Potential Biases in<br>Population Genetic Inference. Journal of Heredity, 2018, 109, 631-640.                                                        | 2.4             | 12              |
| 94  | Genetic Pedigree Analysis of the Pilot Breeding Program for the Rediscovered Galapagos Giant<br>Tortoise from Floreana Island. Journal of Heredity, 2018, 109, 620-630.                                                        | 2.4             | 11              |
| 95  | The population genomics of multiple tsetse fly ( Glossina fuscipes fuscipes ) admixture zones in<br>Uganda. Molecular Ecology, 2019, 28, 66-85.                                                                                | 3.9             | 11              |
| 96  | Restorationâ€mediated secondary contact leads to introgression of alewife ecotypes separated by a colonialâ€era dam. Evolutionary Applications, 2020, 13, 652-664.                                                             | 3.1             | 10              |
| 97  | Species delimitation and invasion history of the balsam woolly adelgid, <i>Adelges</i><br>( <i>Dreyfusia</i> ) <i>piceae</i> (Hemiptera: Aphidoidea: Adelgidae), species complex. Systematic<br>Entomology, 2021, 46, 186-204. | 3.9             | 10              |
| 98  | Habitat fragmentation and the genetic structure of the Amazonian palm Mauritia flexuosa L.f.<br>(Arecaceae) on the island of Trinidad. Conservation Genetics, 2014, 15, 355-362.                                               | 1.5             | 9               |
| 99  | Ecological and evolutionary influences on body size and shape in the Galápagos marine iguana<br>(Amblyrhynchus cristatus). Oecologia, 2016, 181, 885-894.                                                                      | 2.0             | 9               |
| 100 | Significant Genetic Impacts Accompany an Urban Rat Control Campaign in Salvador, Brazil. Frontiers in Ecology and Evolution, 2019, 7, .                                                                                        | 2.2             | 9               |
| 101 | Identification of winter moth ( <i>Operophtera brumata</i> ) refugia in North Africa and the Italian<br>Peninsula during the last glacial maximum. Ecology and Evolution, 2019, 9, 13931-13941.                                | 1.9             | 9               |
| 102 | Uncovering Genomic Regions Associated with <i>Trypanosoma</i> Infections in Wild Populations of the Tsetse Fly <i>Glossina fuscipes</i> . G3: Genes, Genomes, Genetics, 2018, 8, 887-897.                                      | 1.8             | 8               |
| 103 | A spatial genetics approach to inform vector control of tsetse flies ( <i>Glossina fuscipes) Tj ETQq1 1 0.784314 r</i>                                                                                                         | gBT./Over       | lock 10 Tf 50   |
| 104 | Widespread hybridization among native and invasive species of Operophtera moths (Lepidoptera:) Tj ETQq0 0 0                                                                                                                    | rgBT/Ove<br>2.4 | erlogk 10 Tf 50 |
| 105 | Genetic Differentiation of Glossina pallidipes Tsetse Flies in Southern Kenya. American Journal of<br>Tropical Medicine and Hygiene, 2018, 99, 945-953.                                                                        | 1.4             | 8               |
| 106 | Mitochondrial DNA sequence divergence and diversity of Glossina fuscipes fuscipes in the Lake<br>Victoria basin of Uganda: implications for control. Parasites and Vectors, 2015, 8, 385.                                      | 2.5             | 7               |
| 107 | Postglacial recolonization shaped the genetic diversity of the winter moth ( Operophtera brumata ) in<br>Europe. Ecology and Evolution, 2017, 7, 3312-3323.                                                                    | 1.9             | 7               |
| 108 | Demographic history and patterns of molecular evolution from whole genome sequencing in the radiation of Galapagos giant tortoises. Molecular Ecology, 2021, 30, 6325-6339.                                                    | 3.9             | 7               |

| #   | Article                                                                                                                                                                                         | IF                | CITATIONS          |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------|
| 109 | A set of highly discriminating microsatellite loci for the Galapagos marine iguana Amblyrhynchus<br>cristatus. Molecular Ecology Notes, 2006, 6, 927-929.                                       | 1.7               | 6                  |
| 110 | Isolation of 13 novel highly polymorphic microsatellite loci for the Amazonian Palm Mauritia flexuosa L.f. (Arecaceae). Conservation Genetics Resources, 2012, 4, 355-357.                      | 0.8               | 6                  |
| 111 | Potential arms race in the coevolution of primates and angiosperms: brazzein sweet proteins and gorilla taste receptors. American Journal of Physical Anthropology, 2016, 161, 181-185.         | 2.1               | 6                  |
| 112 | Phylogeography and population structure of the tsetse fly Glossina pallidipes in Kenya and the Serengeti ecosystem. PLoS Neglected Tropical Diseases, 2020, 14, e0007855.                       | 3.0               | 6                  |
| 113 | A machine learning approach to integrating genetic and ecological data in tsetse flies ( <i>Glossina) Tj ETQq1 1 0<br/>1762-1777.</i>                                                           | .784314 rg<br>3.1 | gBT /Overloc<br>6  |
| 114 | Genetic diversity of Glossina fuscipes fuscipes along the shores of Lake Victoria in Tanzania and Kenya:<br>implications for management. Parasites and Vectors, 2017, 10, 268.                  | 2.5               | 5                  |
| 115 | Was Frozen Mammoth or Giant Ground Sloth Served for Dinner at The Explorers Club?. PLoS ONE, 2016, 11, e0146825.                                                                                | 2.5               | 4                  |
| 116 | Seeking compromise across competing goals in conservation translocations: The case of the †extinct'<br>Floreana Island Galapagos giant tortoise. Journal of Applied Ecology, 2020, 57, 136-148. | 4.0               | 3                  |
| 117 | Evolution and phylogenetics. , 2021, , 117-138.                                                                                                                                                 |                   | 3                  |
| 118 | Northern Fennoscandia via the British Isles: evidence for a novel post-glacial recolonization route by winter moth (Operophtera brumata). Frontiers of Biogeography, 2021, 13, .                | 1.8               | 3                  |
| 119 | Four times out of Europe: Serial invasions of the winter moth, Operophtera brumata , to North<br>America. Molecular Ecology, 2021, 30, 3439-3452.                                               | 3.9               | 3                  |
| 120 | A new lineage of Galapagos giant tortoises identified from museum samples. Heredity, 2022, 128, 261-270.                                                                                        | 2.6               | 3                  |
| 121 | The Galapagos giant tortoise Chelonoidis phantasticus is not extinct. Communications Biology, 2022,<br>5, .                                                                                     | 4.4               | 3                  |
| 122 | Realâ€ŧime geographic settling of a hybrid zone between the invasive winter moth ( <i>Operophtera) Tj ETQq0 0<br/>6617-6633.</i>                                                                | 0 rgBT /Ov<br>3.9 | verlock 10 Tf<br>2 |
|     |                                                                                                                                                                                                 |                   |                    |

123Characterization of polymorphic microsatellite loci for the polychaete tubeworm Hobsonia florida.1.71Molecular Ecology Notes, 2006, 6, 390-392.1.71