Andreas Leineweber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6677769/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of Cu on Nitriding of α-Fe. Metals, 2022, 12, 619.	1.0	2
2	Domain structure of pseudosymmetric Î∙″-ordered Cu6Sn5 by EBSD analysis. Acta Materialia, 2022, 229, 117828.	3.8	6
3	Gaseous nitriding of Co-10Âat% and -15Âat% Cr alloys at 400°C and 450°C. Journal of Alloys and Compounds, 2022, 907, 164535.	2.8	0
4	Thermodynamic re-modelling of the Cu–Nb–Sn system: Integrating the nausite phase. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2022, 77, 102409.	0.7	4
5	β-Al4.5FeSi: Hierarchical crystal and defect structure: Reconciling experimental and theoretical evidence including the influence of Al vs. Si ordering on the crystal structure. Journal of Alloys and Compounds, 2022, 911, 165015.	2.8	7
6	Thermodynamic description of high-pressure phase equilibria in the Fe–N system. Journal of Alloys and Compounds, 2022, 914, 165304.	2.8	0
7	Interplay between Habit Plane and Orientation Relationship in an Electron Backscatter Diffraction Analysis: Using the Example of Î-â€2-Al8Fe3 in ÎAl5Fe2. Crystals, 2022, 12, 813.	1.0	4
8	Thermodynamics of martensite formation in Fe–Mn–Al–Ni shape memory alloys. Scripta Materialia, 2021, 192, 26-31.	2.6	14
9	Laves phases: a review of their functional and structural applications and an improved fundamental understanding of stability and properties. Journal of Materials Science, 2021, 56, 5321-5427.	1.7	186
10	Nanoscale twinning in Fe–Mn–Al–Ni martensite: a backscatter Kikuchi diffraction study. Journal of Applied Crystallography, 2021, 54, 54-61.	1.9	8
11	Fe13Ga9 intermetallic in bcc-base Fe–Ga alloy. Intermetallics, 2021, 131, 107059.	1.8	6
12	Impact of melt conditioning and filtration on iron-rich β phase in AlSi9Cu3 and its fatigue life studied by μCT. Materials Characterization, 2021, 174, 111039.	1.9	11
13	Eutectoid growth of nanoscale amorphous Fe-Si nitride upon nitriding. Acta Materialia, 2021, 209, 116774.	3.8	6
14	Nanoscale twinning and superstructures of martensite in the Fe–Mn–Al–Ni system. Materialia, 2021, 16, 101062.	1.3	5
15	Crystallography of γ′-Fe4N formation on bulk polycrystalline α-Fe substrates. Materialia, 2021, 17, 101119.	1.3	5
16	Phase Stability of Iron Nitride Fe4N at High Pressure—Pressure-Dependent Evolution of Phase Equilibria in the Fe–N System. Materials, 2021, 14, 3963.	1.3	8
17	Stable and Metastable Phase Equilibria Involving the Cu6Sn5 Intermetallic. Journal of Electronic Materials, 2021, 50, 5898-5914.	1.0	6
18	Phase Evolution During Heat Treatment of Nb ₃ Sn Wires Under Development for the FCC Study. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-6.	1.1	7

#	Article	IF	CITATIONS
19	Crystallography of Fe–Mn–Al–Ni Shape Memory Alloys. Shape Memory and Superelasticity, 2021, 7, 383-393.	1.1	3
20	Preparation of CoGe2-type NiSn2 at 10ÂGPa. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2021, .	0.3	0
21	Fe Nitride Formation in Fe–Si Alloys: Crystallographic and Thermodynamic Aspects. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 4957-4973.	1.1	2
22	Anisotropic nitriding behavior upon formation of expanded hcp in Co-Cr alloys. Scripta Materialia, 2021, 203, 114041.	2.6	1
23	Interaction of N with White-solidified Cast Iron Model Alloys: The Effect of Mn and Cu on the Formation of Fe and Si Nitrides. Journal of Casting & Materials Engineering, 2021, 5, 66-70.	0.1	3
24	Two-Phase η′ + η Region in Cu6Sn5 Intermetallic: Insight into the Order–Disorder Transition from Diffusion Couples. Journal of Electronic Materials, 2020, 49, 245-256.	1.0	12
25	The iron silicocarbide in cast irons revisited. Journal of Alloys and Compounds, 2020, 815, 152468.	2.8	8
26	Nausite and NbSn2 – Growth and distinction of structural related intermetallic phases in the Cu–Nb–Sn system. Materials Characterization, 2020, 168, 110563.	1.9	5
27	An orthorhombic D022-like precursor to Al8Mo3 in the Al–Mo–Ti system. Journal of Alloys and Compounds, 2020, 823, 153807.	2.8	7
28	Stabilization of the ζ-Cu10Sn3 Phase by Ni at Soldering-Relevant Temperatures. Journal of Electronic Materials, 2020, 49, 3609-3623.	1.0	3
29	Cu6Sn5 intermetallic: Reconciling composition and crystal structure. Scripta Materialia, 2020, 183, 66-70.	2.6	19
30	Experimental Investigations of the Fe-Mn-Ti System in the Concentration Range of up to 30Âat.% Ti. Journal of Phase Equilibria and Diffusion, 2020, 41, 457-467.	0.5	9
31	Crystallography of γ′-Fe ₄ N formation in single-crystalline α-Fe whiskers. Journal of Applied Crystallography, 2020, 53, 865-879.	1.9	5
32	Crystal structure of incommensurate ηʺ-Cu _{1.235} Sn intermetallic. Zeitschrift Fur Kristallographie - Crystalline Materials, 2020, 235, 445-457.	0.4	8
33	Lowâ€ŧemperature annealing and graphitizing of whiteâ€solidified lowâ€slloy cast irons. Materialwissenschaft Und Werkstofftechnik, 2019, 50, 682-695.	0.5	7
34	Cobalt germanide precipitates indirectly improve the properties of thermoelectric germanium antimony tellurides. Journal of Materials Chemistry C, 2019, 7, 11419-11430.	2.7	4
35	The ternary Al–Mo–Ti system revisited: Phase equilibria of Al63(Mo,Ti)37. Journal of Alloys and Compounds, 2019, 811, 152055.	2.8	7
36	The CERN FCC Conductor Development Program: A Worldwide Effort for the Future Generation of High-Field Magnets. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-9.	1.1	35

#	Article	IF	CITATIONS
37	Thermodynamic assessment and experimental investigation of the systems Al–Fe–Mn and Al–Fe–Mn–I Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2019, 66, 101621.	^{Ni} 0.7	19
38	High-pressure high-temperature study of the pressure induced decomposition of the iron nitride γ′-Fe4N. Journal of Alloys and Compounds, 2019, 801, 438-448.	2.8	11
39	The monoclinic lattice distortion of η′-Cu6Sn5. Journal of Alloys and Compounds, 2019, 794, 491-500.	2.8	14
40	Two-phase and three-phase crystallographic relationships in white-solidified and nitrided Fe-C-Si cast iron. Acta Materialia, 2019, 170, 240-252.	3.8	13
41	Interstitial atom ordering in fcc-based Ni4X with X = N and C. Computational Materials Science, 2019, 161, 209-214.	1.4	5
42	β- and δ-Al-Fe-Si intermetallic phase, their intergrowth and polytype formation. Journal of Alloys and Compounds, 2019, 780, 917-929.	2.8	27
43	Thermodynamic assessment and experimental investigation of the Al–Mn–Ni system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2019, 64, 78-89.	0.7	10
44	Effect of Mn and cooling rates on α-, β- and δ-Al–Fe–Si intermetallic phase formation in a secondary Al–Si alloy. Materialia, 2019, 5, 100198.	1.3	57
45	On the microstructural and functional stability of Fe-Mn-Al-Ni at ambient and elevated temperatures. Scripta Materialia, 2019, 162, 442-446.	2.6	27
46	From random stacking faults to polytypes: A 12-layer NiSn4 polytype. Journal of Alloys and Compounds, 2019, 774, 265-273.	2.8	4
47	EBSD characterization of the eutectic microstructure in hypoeutectic Fe-C and Fe-C-Si alloys. Materials Characterization, 2018, 138, 274-283.	1.9	8
48	Iron single crystal growth from a lithium-rich melt. Journal of Crystal Growth, 2018, 486, 50-55.	0.7	1
49	Atomic channel occupation in disordered Î⊷Al5Fe2 and in two of its low-temperatures phases, Ε″ and Ε‴. Intermetallics, 2018, 93, 251-262.	1.8	24
50	Effect of Melt Conditioning on Removal of Fe from Secondary Al-Si Alloys Containing Mg, Mn, and Cr. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 6375-6389.	1.1	15
51	Approximate icosahedral symmetry of α-Al(Fe,Mn,Cr)Si in electron backscatter diffraction analysis of a secondary Al-Si casting alloy. Materials Characterization, 2018, 141, 406-411.	1.9	17
52	Size–strain separation in diffraction line profile analysis. Journal of Applied Crystallography, 2018, 51, 831-843.	1.9	32
53	High temperature phase equilibria in the Ti-poor part of the Al–Mo–Ti system. Journal of Alloys and Compounds, 2017, 706, 616-628	2.8	6
54	Powder-X-ray diffraction analysis of the crystal structure of the η′-Al8Fe3 (η′-Al2.67Fe) phase. Journal of Alloys and Compounds, 2017, 721, 691-696.	2.8	23

#	Article	IF	CITATIONS
55	Intermetallic Sludge Formation in Fe Containing Secondary Al–Si Alloys Influenced by Cr and Mn as Preparative Tool for Metal Melt Filtration. Advanced Engineering Materials, 2017, 19, 1700161.	1.6	25
56	High-temperature phase equilibria with the bcc-type β (AlMo) phase in the binary Al–Mo system. Intermetallics, 2017, 83, 29-37.	1.8	12
57	Nitrogen Transfer between Solid Phases in the System Mnâ€N Detected via in situ Neutron Diffraction. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2017, 643, 1929-1938.	0.6	9
58	Crystal structures of Fe4C vs. Fe4N analysed by DFT calculations: Fcc-based interstitial superstructures explored. Acta Materialia, 2017, 140, 433-442.	3.8	25
59	Reflection splitting-induced microstrain broadening. Powder Diffraction, 2017, 32, S35-S39.	0.4	9
60	The crystal structure of (Nb0.75Cu0.25)Sn2 in the Cu-Nb-Sn system. Intermetallics, 2017, 80, 16-21.	1.8	16
61	Heat capacity of Fe-Al intermetallics: B2-FeAl, FeAl2, Fe2Al5 and Fe4Al13. Journal of Alloys and Compounds, 2017, 725, 848-859.	2.8	33
62	Modification of the Diffusion Process in the Iron-Aluminum System via Spark Plasma Sintering/Field Assisted Sintering Technology. Defect and Diffusion Forum, 2016, 367, 1-9.	0.4	3
63	Thermodynamics of the Fe-N and Fe-N-C Systems: The Fe-N and Fe-N-C Phase Diagrams Revisited. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 6173-6186.	1.1	42
64	On the synthesis and microstructure analysis of high performance MnBi. AIP Advances, 2016, 6, .	0.6	24
65	Effect of surface configurations on the room-temperature magnetism of pure ZnO. Journal of Materials Chemistry C, 2016, 4, 4166-4175.	2.7	18
66	Thermal expansion anisotropy as source for microstrain broadening of polycrystalline cementite, Fe ₃ C. Journal of Applied Crystallography, 2016, 49, 1632-1644.	1.9	9
67	Stacking disorder in metastable NiSn4. Materials and Design, 2016, 109, 324-333.	3.3	11
68	The \$\$upalpha +upvarepsilon \$\$ Two-Phase Equilibrium in the Fe-N-C System: Experimental Investigations and Thermodynamic Calculations. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 4411-4424.	1.1	7
69	The effect of tuning the microstructure of TIPS-tetraazapentacene on the performance of solution processed thin film transistors. Journal of Materials Chemistry C, 2016, 4, 1194-1200.	2.7	44
70	A thermodynamic model for non-stoichiometric cementite; the Fe–C phase diagram. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2016, 52, 38-46.	0.7	15
71	Microstructural development and crystallographic properties of decomposing Fe–N–C compound layers. International Journal of Materials Research, 2016, 107, 203-216.	0.1	18
72	Side-group engineering: The influence of norbornadienyl substituents on the properties of ethynylated pentacene and tetraazapentacene. Organic Electronics, 2016, 33, 102-109.	1.4	20

#	Article	IF	CITATIONS
73	Fe–N and Fe–N–C phase equilibria above 853 K studied by nitriding/nitrocarburising and secondary annealing. International Journal of Materials Research, 2016, 107, 192-202.	0.1	9
74	Comment on "High-temperature soft magnetic properties of antiperovskite nitrides ZnNFe3 and AlNFe3― by Yankun Fu, Shuai Lin, and Bosen Wang, J. Magn. Magn. Mater. 378 (2015) 54–58. Journal of Magnetism and Magnetic Materials, 2016, 416, 475-476.	1.0	4
75	The Nature and Origin of "Double Expanded Austenite―in Ni-Based Ni-Ti Alloys Developing Upon Low Temperature Gaseous Nitriding. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 4115-4131.	1.1	16
76	Influence of the Carbon Content on the Crystallization and Oxidation Behavior of Polymerâ€Derived Silicon Carbide (SiC). Advanced Engineering Materials, 2015, 17, 1631-1638.	1.6	11
77	N,N′-Dihydrotetraazapentacenes (DHTA) in thin film transistors. Journal of Materials Chemistry C, 2015, 3, 1604-1609.	2.7	22
78	Dependence of the nitriding rate of ferritic and austenitic substrates on the crystallographic orientation of surface grains; gaseous nitriding of Fe-Cr and Ni-Ti alloys. Philosophical Magazine, 2015, 95, 4143-4160.	0.7	12
79	The crystallographic growth directions of Sn whiskers. Acta Materialia, 2015, 86, 102-109.	3.8	19
80	C-vacancy concentration in cementite, Fe3C1â^, in equilibrium with α-Fe[C] and γ-Fe[C]. Acta Materialia, 2015, 86, 374-384.	3.8	20
81	Lattice-parameter change induced by accommodation of precipitate/matrix misfit; misfitting nitrides in ferrite. Acta Materialia, 2015, 98, 254-262.	3.8	33
82	Unique high-temperature performance of highly condensed MnBi permanent magnets. Scripta Materialia, 2015, 107, 131-135.	2.6	42
83	Nitrogen uptake by nickel in NH ₃ –H ₂ atmospheres. Surface Engineering, 2014, 30, 16-20.	1.1	6
84	Anomalously high density and thermal stability of nanotwins in Ni(W) thin films: Quantitative analysis by x-ray diffraction. Journal of Materials Research, 2014, 29, 1642-1655.	1.2	11
85	Comment on: "Structural, elastic, and thermodynamic properties under pressure of the FeC in the martensitic phase: anab-initiostudy― High Pressure Research, 2014, 34, 500-502.	0.4	0
86	Experimental Investigation and Thermodynamic Modeling of the Ni-Rich Part of the Ni-N Phase Diagram. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 4863-4874.	1.1	8
87	Broadening and shifting of Bragg reflections of nanoscale-microtwinned LT-Ni3Sn2. Philosophical Magazine, 2013, 93, 4440-4468.	0.7	5
88	Hydrogenâ€Bond Reinforced Vanadia Nanofiber Paper of High Stiffness. Advanced Materials, 2013, 25, 2468-2473.	11.1	29
89	Parabolic microstrain-like line broadening induced by random twin faulting. Philosophical Magazine, 2012, 92, 1844-1864.	0.7	4
90	Ni ₃ N compound layers produced by gaseous nitriding of nickel substrates; layer growth, macrostresses and intrinsic elastic anisotropy. Journal of Materials Research, 2012, 27, 1531-1541.	1.2	12

#	Article	IF	CITATIONS
91	Anisotropic microstrain broadening in cementite, Fe3C, caused by thermal microstress: comparison between prediction and results from diffraction-line profile analysis. Journal of Applied Crystallography, 2012, 45, 944-949.	1.9	9
92	Crystal structure, layer defects, and the origin of plastic deformability of Nb2Co7. Intermetallics, 2012, 25, 34-41.	1.8	26
93	Microstructural and Phase Evolution of Compound Layers Growing on α–Iron During Gaseous Nitrocarburizing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 2401-2413.	1.1	25
94	Simultaneous control of the nitrogen and carbon activities during nitrocarburising of iron. Surface and Coatings Technology, 2012, 206, 2780-2791.	2.2	28
95	Ordered and disordered states in NiAs/Ni ₂ In-type Ni _{1+δ} Sn: Crystallography and order formation. International Journal of Materials Research, 2011, 102, 861-873.	0.1	19
96	Understanding anisotropic microstrain broadening in Rietveld refinement. Zeitschrift Für Kristallographie, 2011, 226, 905-923.	1.1	45
97	The kinetics of a polytypic Laves phase transformation in TiCr2. Intermetallics, 2011, 19, 526-535.	1.8	25
98	Polytypic transformations of the HfCr2 Laves phase – Part II: Kinetics of the polymorphic C14Â→ÂC15 transformation. Intermetallics, 2011, 19, 1442-1447.	1.8	7
99	Polytypic transformations of the HfCr2 Laves phase – Part I: Structural evolution as a function of temperature, time and composition. Intermetallics, 2011, 19, 1428-1441.	1.8	18
100	Reply to comments on the absence of a stable hexagonal Laves phase modification (NbCr2) in the Nb–Cr system. Scripta Materialia, 2011, 64, 994-997.	2.6	9
101	On AgRhO2, and the new quaternary delafossites AgLi1/3M2/3O2, syntheses and analyses of real structures. Journal of Solid State Chemistry, 2011, 184, 1112-1119.	1.4	42
102	The absence of a stable hexagonal Laves phase modification (NbCr2) in the Nb–Cr system. Scripta Materialia, 2010, 62, 227-230.	2.6	35
103	The influence of plastic deformation on polytypic phase transformations in TiCr2 Laves phases. Scripta Materialia, 2010, 63, 1041-1044.	2.6	2
104	Metal Dependence of Network Dimensionality in 1,2,4â€Diazaphospholide Coordination Polymers. Chemistry - A European Journal, 2010, 16, 2982-2985.	1.7	13
105	Anisotropic microstrain broadening of minium, Pb ₃ O ₄ , in a high-pressure cell: interpretation of line-width parameters in terms of stress variations. Journal of Applied Crystallography, 2010, 43, 17-26.	1.9	8
106	Notes on the order-of-reflection dependence of microstrain broadening. Journal of Applied Crystallography, 2010, 43, 981-989.	1.9	29
107	Transformation–dislocation dipoles in Laves phases: A high-resolution transmission electron microscopy analysis. Journal of Materials Research, 2010, 25, 1983-1991.	1.2	12
108	Solid solubility by anti-site atoms in the C36-TiCr2 Laves phase revealed by single-crystal X-ray diffractometry. Journal of Alloys and Compounds, 2010, 505, 492-496.	2.8	11

#	Article	IF	CITATIONS
109	Layer-stacking irregularities in C36-type Nb–Cr and Ti–Cr Laves phases and their relation with polytypic phase transformations. Philosophical Magazine, 2010, 90, 3149-3175.	0.7	28
110	Incommensurately modulated LT″-Ni1+δSn (δ=0.60, 0.63): Rietveld refinement, line-broadening analysis and structural relation with LT- and LT′-Ni1+δSn. Journal of Solid State Chemistry, 2009, 182, 1846-1855.	1.4	18
111	Microstructure and crystallography of massive cementite layers on ferrite substrates. Acta Materialia, 2008, 56, 5837-5844.	3.8	16
112	X-ray diffraction line-profile analysis of hexagonal <i>Ϊμ</i> -iron nitride compound layers: composition–and stress–depth profiles. Philosophical Magazine, 2008, 88, 145-169.	0.7	21
113	Metastable Hexagonal Modifications of the NbCr ₂ Laves Phase as Function of Cooling Rate. Materials Research Society Symposia Proceedings, 2008, 1128, 80701.	0.1	6
114	The use of lattice-parameter changes to trace the kinetics of phase transformations powder-diffraction analysis of disorder-order transformations in Ni1+δSn. Zeitschrift Fur Kristallographie - Crystalline Materials, 2007, 222, 150-159.	0.4	9
115	Elastic anisotropy of γ′-Fe4N and elastic grain interaction in γ′-Fe4N1â^'y layers on α-Fe: First-principles calculations and diffraction stress measurements. Acta Materialia, 2007, 55, 5833-5843.	3.8	78
116	Mobility of nitrogen in ε-Fe3N below 150°C: The activation energy for reordering. Acta Materialia, 2007, 55, 6651-6658.	3.8	13
117	Anisotropic microstrain broadening due to field-tensor distributions. Journal of Applied Crystallography, 2007, 40, 362-370.	1.9	16
118	Microstrain-like diffraction-line broadening as exhibited by incommensurate phases in powder diffraction patterns. Journal of Applied Crystallography, 2007, 40, 1027-1034.	1.9	20
119	Anisotropic diffraction-line broadening due to microstrain distribution: parametrization opportunities. Journal of Applied Crystallography, 2006, 39, 509-518.	1.9	25
120	γʹ-Fe4N formation in decomposing ε-Fe3N: A powder diffraction study using synchrotron radiation. , 2006, , 449-454.		1
121	A time-resolved X-ray powder diffraction method to trace the decomposition of PdBysolid solutions. Zeitschrift Für Kristallographie, Supplement, 2006, 2006, 443-448.	0.5	6
122	Diffraction line broadening due to lattice-parameter variations caused by a spatially varying scalar variable: its orientation dependence caused by locally varying nitrogen content in â^Š-FeN0.433. Journal of Applied Crystallography, 2004, 37, 123-135.	1.9	60
123	Static atomic displacements of Sn in disordered NiAs/Ni2In type HT-Ni1+δSn. Journal of Solid State Chemistry, 2004, 177, 936-945.	1.4	32
124	Variation of the crystal structures of incommensurate LT′-Ni1+δSn (δ=0.35, 0.38, 0.41) and commensurate LT-Ni1+δSn (δ=0.47, 0.50) with composition and annealing temperature. Journal of Solid State Chemistry, 2004, 177, 1197-1212.	1.4	37
125	The lattice parameters of ε-iron nitrides: lattice strains due to a varying degree of nitrogen ordering. Acta Materialia, 2004, 52, 173-180.	3.8	91
126	Nitrogen ordering in ζ-manganese nitrides with hcp arrangement of Mn – MnNy with 0.39 < y < 0.48 – determined by neutron diffraction. Journal of Alloys and Compounds, 2004, 368, 229-247.	2.8	22

ANDREAS LEINEWEBER

#	Article	IF	CITATIONS
127	High temperature axial ratios c/a in hcp-based Îμ-type interstitial nitrides MN with M=Mn, Fe, Ni. Journal of Alloys and Compounds, 2004, 384, 1-5.	2.8	42
128	Ordering of Nitrogen in Nickel Nitride Ni3N Determined by Neutron Diffraction. Inorganic Chemistry, 2001, 40, 5818-5822.	1.9	110
129	Nitrogen ordering and ferromagnetic properties of ϵ-Fe3N1+x (0.10â‰ ¤ â‰ 9 .39) and ϵ-Fe3(N0.80C0.20)1.38. Journal of Alloys and Compounds, 2001, 316, 21-38.	2.8	104
130	A NiAs/Ni2In-Type Phase Ni1+xSn (0.35 <x<0.45) incommensurate="" ni.<br="" occupational="" of="" ordering="" with="">Journal of Solid State Chemistry, 2001, 159, 191-197.</x<0.45)>	1.4	32
131	Preparation and Crystal Structures of Ni(NH3)2Cl2 and of Two Modifications of Ni(NH3)2Br2 and Ni(NH3)2l2. Journal of Solid State Chemistry, 2000, 152, 381-387.	1.4	17
132	Theoretical analysis of occupational ordering in hexagonal interstitial compounds: carbides, nitrides and oxides with "ε-type―superstructures. Journal of Alloys and Compounds, 2000, 308, 178-188.	2.8	26
133	The manganese nitrides ηâ€Mn3N2 and Î _a â€Mn6N5 + x: nuclear and magnetic structures. Journal of Materials Chemistry, 2000, 10, 2827-2834.	6.7	101
134	Preparation and Crystal Structures of Mg(NH3)2Cl2, Mg(NH3)2Br2, and Mg(NH3)2l2. Journal of Solid State Chemistry, 1999, 147, 229-234.	1.4	33
135	ε-Fe3N: magnetic structure, magnetization and temperature dependent disorder of nitrogen. Journal of Alloys and Compounds, 1999, 288, 79-87.	2.8	112
136	Preparation of single crystals of LaAl and X-ray structure determination. Journal of Alloys and Compounds, 1998, 278, L10-L12.	2.8	16
137	Interaction of Feâ€Containing, Secondary Al–Si Alloy with Oxide and Carbonâ€Containing Ceramics for Fe Removal. Advanced Engineering Materials, 0, , 2100595.	1.6	2
138	Nitriding of Whiteâ€Solidified Fe–C–Si Alloys: Diffusion Path Concept Applied to Inhomogeneous Microstructures. Advanced Engineering Materials, 0, , 2100833.	1.6	2
139	Removal of Iron from a Secondary Al–Si Die asting Alloy by Metal Melt Filtration in a Laboratory Filtration Apparatus. Advanced Engineering Materials, 0, , 2100695.	1.6	3