Kohei Sato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6677743/publications.pdf Version: 2024-02-01

		471509	713466
22	1,571	17	21
papers	citations	h-index	g-index
23	23	23	2115
all docs	docs citations	times ranked	citing authors

KOUEL SATO

#	Article	IF	CITATIONS
1	Supramolecular Assembly of Peptide Amphiphiles. Accounts of Chemical Research, 2017, 50, 2440-2448.	15.6	414
2	Peptide supramolecular materials for therapeutics. Chemical Society Reviews, 2018, 47, 7539-7551.	38.1	208
3	Supramolecular–covalent hybrid polymers for light-activated mechanical actuation. Nature Materials, 2020, 19, 900-909.	27.5	186
4	Columnarly Assembled Liquid-Crystalline Peptidic Macrocycles Unidirectionally Orientable over a Large Area by an Electric Field. Journal of the American Chemical Society, 2011, 133, 13767-13769.	13.7	87
5	Homochiral supramolecular polymerization of bowl-shaped chiral macrocycles in solution. Chemical Science, 2014, 5, 136-140.	7.4	82
6	Ultrafast water permeation through nanochannels with a densely fluorous interior surface. Science, 2022, 376, 738-743.	12.6	82
7	Supramolecular Nanostructure Activates TrkB Receptor Signaling of Neuronal Cells by Mimicking Brain-Derived Neurotrophic Factor. Nano Letters, 2018, 18, 6237-6247.	9.1	79
8	Programmable Assembly of Peptide Amphiphile via Noncovalent-to-Covalent Bond Conversion. Journal of the American Chemical Society, 2017, 139, 8995-9000.	13.7	68
9	Aaptamine, an alkaloid from the sponge Aaptos suberitoides, functions as a proteasome inhibitor. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 3341-3343.	2.2	61
10	3D Printing of Supramolecular Polymer Hydrogels with Hierarchical Structure. Small, 2021, 17, e2005743.	10.0	54
11	Photocatalytic Aqueous CO ₂ Reduction to CO and CH ₄ Sensitized by Ullazine Supramolecular Polymers. Journal of the American Chemical Society, 2022, 144, 3127-3136.	13.7	43
12	Bioactive Nanofibers Induce Neural Transdifferentiation of Human Bone Marrow Mesenchymal Stem Cells. ACS Applied Materials & Interfaces, 2018, 10, 41046-41055.	8.0	42
13	A synthetic ion channel with anisotropic ligand response. Nature Communications, 2020, 11, 2924.	12.8	36
14	Chiral Recognition of Lipid Bilayer Membranes by Supramolecular Assemblies of Peptide Amphiphiles. ACS Biomaterials Science and Engineering, 2019, 5, 2786-2792.	5.2	26
15	Synthetic Ion Channel Formed by Multiblock Amphiphile with Anisotropic Dual-Stimuli-Responsiveness. Journal of the American Chemical Society, 2021, 143, 1348-1355.	13.7	23
16	Supramolecular Transmembrane Ion Channels Formed by Multiblock Amphiphiles. Accounts of Chemical Research, 2021, 54, 3700-3709.	15.6	23
17	Calcium-Induced Morphological Transitions in Peptide Amphiphiles Detected by ¹⁹ F-Magnetic Resonance Imaging. ACS Applied Materials & Interfaces, 2017, 9, 39890-39894.	8.0	19
18	Supramolecular Mechanosensitive Potassium Channel Formed by Fluorinated Amphiphilic Cyclophane. Journal of the American Chemical Society, 2022, 144, 11802-11809.	13.7	17

Κομει Sato

#	Article	IF	CITATIONS
19	Imidazoliniumâ€based Multiblock Amphiphile as Transmembrane Anion Transporter. Chemistry - an Asian Journal, 2021, 16, 147-157.	3.3	9
20	Aromatic Fluorination of Multiblock Amphiphile Enhances Its Incorporation into Lipid Bilayer Membranes. ChemistryOpen, 2020, 9, 301-303.	1.9	8
21	Calcium-induced reversible assembly of phosphorylated amphiphile within lipid bilayer membranes. Chemical Communications, 2021, 57, 4106-4109.	4.1	4
22	Self-assembling Peptides and Their Applications in Regenerative Medicine. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2019, 77, 716-717.	0.1	0