
Cheng Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6677537/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Accurate and broadband manipulations of harmonic amplitudes and phases to reach 256 QAM millimeter-wave wireless communications by time-domain digital coding metasurface. National Science Review, 2022, 9, nwab134.	9.5	46
2	A High-Efficiency and Reconfigurable Rectenna Array for Dynamic Output DC Power Control. Frontiers in Physics, 2022, 10, .	2.1	3
3	A Broadband Low-RCS Circularly Polarized Meta-Antenna. Frontiers in Physics, 2022, 10, .	2.1	0
4	BST-silicon hybrid terahertz meta-modulator for dual-stimuli-triggered opposite transmission amplitude control. Nanophotonics, 2022, 11, 2075-2083.	6.0	30
5	Optically Controlled Terahertz Dynamic Beam Splitter with Adjustable Split Ratio. Nanomaterials, 2022, 12, 1169.	4.1	9
6	Multi-interface self-assembling on MXenes skeleton towards wideband electromagnetic dissipation. Materials Today Physics, 2022, , 100685.	6.0	7
7	Silicon-coated fibrous network of carbon nanotube/iron towards stable and wideband electromagnetic wave absorption. Journal of Materials Science and Technology, 2022, 121, 199-206.	10.7	38
8	Highâ€Performance Transparent Broadband Microwave Absorbers. Advanced Materials Interfaces, 2022, 9, .	3.7	7
9	Efficiency Enhanced Seven-Band Omnidirectional Rectenna for RF Energy Harvesting. IEEE Transactions on Antennas and Propagation, 2022, 70, 8473-8484.	5.1	12
10	Linear and Nonlinear Polarization Syntheses and Their Programmable Controls based on Anisotropic Timeâ€Đomain Digital Coding Metasurface. Small Structures, 2021, 2, 2000060.	12.0	58
11	Thinâ€Metalâ€Filmâ€Based Transparent Conductors: Material Preparation, Optical Design, and Device Applications. Advanced Optical Materials, 2021, 9, 2001298.	7.3	64
12	Folded Transmitarray Antenna With Circular Polarization Based on Metasurface. IEEE Transactions on Antennas and Propagation, 2021, 69, 806-814.	5.1	71
13	Linear and Nonlinear Polarization Syntheses and Their Programmable Controls based on Anisotropic Timeâ€Domain Digital Coding Metasurface. Small Structures, 2021, 2, 2170003.	12.0	5
14	Ultrathin MXene-aramid nanofiber electromagnetic interference shielding films with tactile sensing ability withstanding harsh temperatures. Nano Research, 2021, 14, 2837-2845.	10.4	55
15	Multilayered Graphene-Assisted Broadband Scattering Suppression through an Ultrathin and Ultralight Metasurface. ACS Applied Materials & Interfaces, 2021, 13, 7698-7704.	8.0	17
16	Tunable Acoustic Metasurface for Three-Dimensional Wave Manipulations. Physical Review Applied, 2021, 15, .	3.8	43
17	Flexible Anti-Metal RFID Tag Antenna Based on High-Conductivity Graphene Assembly Film. Sensors, 2021, 21, 1513.	3.8	15
18	A reconfigurable active acoustic metalens. Applied Physics Letters, 2021, 118, .	3.3	72

CHENG ZHANG

#	Article	IF	CITATIONS
19	Hybrid metamaterial absorber for ultra-low and dual-broadband absorption. Optics Express, 2021, 29, 14078.	3.4	107
20	Passive UHF RFID tags made with graphene assembly film-based antennas. Carbon, 2021, 178, 803-809.	10.3	16
21	Heterogeneous Amplitudeâ^'Phase Metasurface for Distinct Wavefront Manipulation. Advanced Photonics Research, 2021, 2, 2100102.	3.6	37
22	Graphene-based anisotropic polarization meta-filter. Materials and Design, 2021, 206, 109768.	7.0	65
23	Two-Channel VO2 Memory Meta-Device for Terahertz Waves. Nanomaterials, 2021, 11, 3409.	4.1	9
24	Multiâ€Band Tunable Chiral Metamaterial for Asymmetric Transmission and Absorption of Linearly Polarized Electromagnetic Waves. Advanced Theory and Simulations, 2020, 3, 2000179.	2.8	11
25	Metasurfaceâ€Based Spatial Phasers for Analogue Signal Processing. Advanced Optical Materials, 2020, 8, 2000128.	7.3	12
26	Convolution operations on time-domain digital coding metasurface for beam manipulations of harmonics. Nanophotonics, 2020, 9, 2771-2781.	6.0	27
27	Transparent Perfect Microwave Absorber Employing Asymmetric Resonance Cavity. Advanced Science, 2019, 6, 1901320.	11.2	40
28	Reflection phase dispersion editing generates wideband invisible acoustic Huygens's metasurface. Journal of the Acoustical Society of America, 2019, 146, 166-171.	1.1	10
29	Manipulation of Electromagnetic and Acoustic Wave Behaviors via Shared Digital Coding Metallic Metasurfaces. Advanced Intelligent Systems, 2019, 1, 1900038.	6.1	15
30	Routing Acoustic Waves via a Metamaterial with Extreme Anisotropy. Physical Review Applied, 2019, 12, .	3.8	16
31	Multiphysical Digital Coding Metamaterials for Independent Control of Broadband Electromagnetic and Acoustic Waves with a Large Variety of Functions. ACS Applied Materials & Interfaces, 2019, 11, 17050-17055.	8.0	25
32	A reflective acoustic meta-diffuser based on the coding meta-surface. Journal of Applied Physics, 2019, 126, .	2.5	14
33	Asymmetric transmission of acoustic waves in a waveguide via gradient index metamaterials. Science Bulletin, 2019, 64, 808-813.	9.0	36
34	Wideband High-Absorption Electromagnetic Absorber With Chaos Patterned Surface. IEEE Antennas and Wireless Propagation Letters, 2019, 18, 197-201.	4.0	39
35	Transparently curved metamaterial with broadband millimeter wave absorption. Photonics Research, 2019, 7, 478.	7.0	75
36	An optically transparent metasurface for broadband microwave antireflection. Applied Physics Letters, 2018, 112, .	3.3	89

CHENG ZHANG

#	Article	IF	CITATIONS
37	Tailoring polarization states of multiple beams that carry different topological charges of orbital angular momentums. Optics Express, 2018, 26, 31664.	3.4	21
38	Spaceâ€Frequencyâ€Domain Gradient Metamaterials. Advanced Optical Materials, 2018, 6, 1801086.	7.3	18
39	Generation of radio vortex beams with designable polarization using anisotropic frequency selective surface. Applied Physics Letters, 2018, 112, .	3.3	43
40	Acoustic surface waves on three-dimensional groove gratings with sub-wavelength thickness. Applied Physics Express, 2018, 11, 087301.	2.4	5
41	A Metamaterial Route to Realize Acoustic Insulation and Anisotropic Electromagnetic Manipulation Simultaneously. Advanced Materials Technologies, 2018, 3, 1800161.	5.8	10
42	Transparent coupled membrane metamaterials with simultaneous microwave absorption and sound reduction. Optics Express, 2018, 26, 22916.	3.4	32
43	Optically Transparent Broadband Microwave Absorption Metamaterial By Standingâ€Up Closedâ€Ring Resonators. Advanced Optical Materials, 2017, 5, 1700109.	7.3	124
44	Broadband metamaterial for optical transparency and microwave absorption. Applied Physics Letters, 2017, 110, .	3.3	234
45	Opticalliy transparent metamaterial for broadband millimeter wave absorption. , 2017, , .		3