Yedi Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6677396/publications.pdf Version: 2024-02-01

Υέδι Ζησι

#	Article	IF	CITATIONS
1	Novel Potential Biomarkers for Retinopathy of Prematurity. Frontiers in Medicine, 2022, 9, 840030.	1.2	17
2	N6-methyladenosine modifications of mRNAs and long noncoding RNAs in oxygen-induced retinopathy in mice. Experimental Eye Research, 2022, 220, 109114.	1.2	7
3	Interleukin-19 Promotes Retinal Neovascularization in a Mouse Model of Oxygen-Induced Retinopathy. , 2022, 63, 9.		2
4	Myeloid-derived suppressor cells improve corneal graft survival through suppressing angiogenesis and lymphangiogenesis. American Journal of Transplantation, 2021, 21, 552-566.	2.6	16
5	Plasma levels of amino acids and derivatives in retinopathy of prematurity. International Journal of Medical Sciences, 2021, 18, 3581-3587.	1.1	14
6	The role and mechanisms of Microglia in Neuromyelitis Optica Spectrum Disorders. International Journal of Medical Sciences, 2021, 18, 3059-3065.	1.1	9
7	Metabolomics Analyses of Mouse Retinas in Oxygen-Induced Retinopathy. , 2021, 62, 9.		11
8	Altered Fecal Microbiome and Metabolome in a Mouse Model of Choroidal Neovascularization. Frontiers in Microbiology, 2021, 12, 738796.	1.5	8
9	The Role of Inflammation in Age-Related Macular Degeneration. International Journal of Biological Sciences, 2020, 16, 2989-3001.	2.6	113
10	Transfer RNA-derived small RNAs: potential applications as novel biomarkers for disease diagnosis and prognosis. Annals of Translational Medicine, 2020, 8, 1092-1092.	0.7	38
11	Plasma metabolites in treatment-requiring retinopathy of prematurity: Potential biomarkers identified by metabolomics. Experimental Eye Research, 2020, 199, 108198.	1.2	21
12	Small RNA Sequencing Reveals Transfer RNA-derived Small RNA Expression Profiles in Retinal Neovascularization. International Journal of Medical Sciences, 2020, 17, 1713-1722.	1.1	13
13	Involvement of IncRNAs and Macrophages: Potential Regulatory Link to Angiogenesis. Journal of Immunology Research, 2020, 2020, 1-9.	0.9	9
14	Altered Long Non-coding RNAs Involved in Immunological Regulation and Associated with Choroidal Neovascularization in Mice. International Journal of Medical Sciences, 2020, 17, 292-301.	1.1	11
15	Investigation of circRNA Expression Profiles and Analysis of circRNA-miRNA-mRNA Networks in an Animal (Mouse) Model of Age-Related Macular Degeneration. Current Eye Research, 2020, 45, 1173-1180.	0.7	11
16	Identifying circRNA-associated-ceRNA networks in retinal neovascularization in mice. International Journal of Medical Sciences, 2019, 16, 1356-1365.	1.1	32
17	Microarray Analysis of Long Non-Coding RNAs and Messenger RNAs in a Mouse Model of Oxygen-Induced Retinopathy. International Journal of Medical Sciences, 2019, 16, 537-547.	1.1	14
18	Differential Expressions of microRNAs and Transfer RNA-derived Small RNAs: Potential Targets of Choroidal Neovascularization. Current Eye Research, 2019, 44, 1226-1235.	0.7	22

Yedi Zhou

#	Article	IF	CITATIONS
19	Interleukin-17: The Role for Pathological Angiogenesis in Ocular Neovascular Diseases. Tohoku Journal of Experimental Medicine, 2019, 247, 87-98.	0.5	28
20	A Missense Mutation in <i>GJA8</i> Encoding Connexin 50 in a Chinese Pedigree with Autosomal Dominant Congenital Cataract. Tohoku Journal of Experimental Medicine, 2018, 244, 105-111.	0.5	12
21	Reduction of retinal nerve fiber layer thickness in vigabatrin-exposed patients: A meta-analysis. Clinical Neurology and Neurosurgery, 2017, 157, 70-75.	0.6	9
22	Different distributions of M1 and M2 macrophages in a mouse model of laser-induced choroidal neovascularization. Molecular Medicine Reports, 2017, 15, 3949-3956.	1.1	67
23	Therapeutic Effect of Novel Single-Stranded RNAi Agent Targeting Periostin in Eyes with Retinal Neovascularization. Molecular Therapy - Nucleic Acids, 2017, 6, 279-289.	2.3	19
24	Subretinal Injection: A Review on the Novel Route of Therapeutic Delivery for Vitreoretinal Diseases. Ophthalmic Research, 2017, 58, 217-226.	1.0	110
25	Quantifying metamorphopsia with M-CHARTS in patients with idiopathic macular hole. Clinical Ophthalmology, 2017, Volume 11, 1719-1726.	0.9	12
26	Diverse roles of macrophages in intraocular neovascular diseases: a review. International Journal of Ophthalmology, 2017, 10, 1902-1908.	0.5	23
27	Applications of CRISPR/Cas9 in retinal degenerative diseases. International Journal of Ophthalmology, 2017, 10, 646-651.	0.5	21
28	Vascular Normalization by ROCK Inhibitor: Therapeutic Potential of Ripasudil (K-115) Eye Drop in Retinal Angiogenesis and Hypoxia. , 2016, 57, 2264.		55
29	Interleukin-12 inhibits pathological neovascularization in mouse model of oxygen-induced retinopathy. Scientific Reports, 2016, 6, 28140.	1.6	32
30	Tenascin-C secreted by transdifferentiated retinal pigment epithelial cells promotes choroidal neovascularization via integrin αV. Laboratory Investigation, 2016, 96, 1178-1188.	1.7	27
31	Tenascin-C promotes angiogenesis in fibrovascular membranes in eyes with proliferative diabetic retinopathy. Molecular Vision, 2016, 22, 436-45.	1.1	17
32	M2 Macrophages Enhance Pathological Neovascularization in the Mouse Model of Oxygen-Induced Retinopathy. , 2015, 56, 4767.		60
33	Inhibition of choroidal fibrovascular membrane formation by new class of RNA interference therapeutic agent targeting periostin. Gene Therapy, 2015, 22, 127-137.	2.3	39
34	Increased vitreous concentrations of MCP-1 and IL-6 after vitrectomy in patients with proliferative diabetic retinopathy: possible association with postoperative macular oedema. British Journal of Ophthalmology, 2015, 99, 960-966.	2.1	51
35	Microarray Analysis of Gene Expression in Fibrovascular Membranes Excised From Patients With Proliferative Diabetic Retinopathy. Investigative Ophthalmology and Visual Science, 2015, 56, 932-946.	3.3	64
36	Overexpression of CD163 in vitreous and fibrovascular membranes of patients with proliferative diabetic retinopathy: possible involvement of periostin. British Journal of Ophthalmology, 2015, 99, 451-456.	2.1	38

#	Article	IF	CITATIONS
37	Increased expression of M-CSF and IL-13 in vitreous of patients with proliferative diabetic retinopathy: implications for M2 macrophage-involving fibrovascular membrane formation. British Journal of Ophthalmology, 2015, 99, 629-634.	2.1	36
38	Altered Expressions of Transfer RNA-Derived Small RNAs and microRNAs in the Vitreous Humor of Proliferative Diabetic Retinopathy. Frontiers in Endocrinology, 0, 13, .	1.5	6