
Fadi N Salloum

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6677307/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The inflammasome promotes adverse cardiac remodeling following acute myocardial infarction in the mouse. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19725-19730.	3.3	501
2	Interleukin-1 Blockade With Anakinra to Prevent Adverse Cardiac Remodeling After Acute Myocardial Infarction (Virginia Commonwealth University Anakinra Remodeling Trial [VCU-ART] Pilot Study). American Journal of Cardiology, 2010, 105, 1371-1377.e1.	0.7	346
3	Phosphodiesterase-5 Inhibition With Sildenafil Attenuates Cardiomyocyte Apoptosis and Left Ventricular Dysfunction in a Chronic Model of Doxorubicin Cardiotoxicity. Circulation, 2005, 111, 1601-1610.	1.6	310
4	Anakinra, a Recombinant Human Interleukin-1 Receptor Antagonist, Inhibits Apoptosis in Experimental Acute Myocardial Infarction. Circulation, 2008, 117, 2670-2683.	1.6	309
5	Sildenafil (Viagra) induces powerful cardioprotective effect via opening of mitochondrial K _{ATP} channels in rabbits. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H1263-H1269.	1.5	260
6	Adrenergic Receptor Blockade Reverses Right Heart Remodeling and Dysfunction in Pulmonary Hypertensive Rats. American Journal of Respiratory and Critical Care Medicine, 2010, 182, 652-660.	2.5	257
7	Sildenafil Induces Delayed Preconditioning Through Inducible Nitric Oxide Synthase–Dependent Pathway in Mouse Heart. Circulation Research, 2003, 92, 595-597.	2.0	225
8	HIF-1 activation attenuates postischemic myocardial injury: role for heme oxygenase-1 in modulating microvascular chemokine generation. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H542-H548.	1.5	190
9	Mitochondrial-targeted Signal Transducer and Activator of Transcription 3 (STAT3) Protects against Ischemia-induced Changes in the Electron Transport Chain and the Generation of Reactive Oxygen Species. Journal of Biological Chemistry, 2011, 286, 29610-29620.	1.6	188
10	PDE5 inhibitors as therapeutics for heart disease, diabetes and cancer. , 2015, 147, 12-21.		187
11	Pharmacological preconditioning with sildenafil: Basic mechanisms and clinical implications. Vascular Pharmacology, 2005, 42, 219-232.	1.0	184
12	Rapamycin confers preconditioning-like protection against ischemia–reperfusion injury in isolated mouse heart and cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2006, 41, 256-264.	0.9	181
13	A Novel Role of MicroRNA in Late Preconditioning. Circulation Research, 2009, 104, 572-575.	2.0	173
14	Inhibition of the NLRP3 inflammasome limits the inflammatory injury following myocardial ischemia–reperfusion in the mouse. International Journal of Cardiology, 2016, 209, 215-220.	0.8	173
15	The NHLBI-Sponsored Consortium for preclinicAl assESsment of cARdioprotective Therapies (CAESAR). Circulation Research, 2015, 116, 572-586.	2.0	164
16	Hypoxia Inducible Factor-1 Activation by Prolyl 4-Hydroxylase-2 Gene Silencing Attenuates Myocardial Ischemia Reperfusion Injury. Circulation Research, 2006, 98, 133-140.	2.0	156
17	Cardioprotection with phosphodiesterase-5 inhibition—a novel preconditioning strategy. Journal of Molecular and Cellular Cardiology, 2004, 36, 165-173.	0.9	143
18	Sildenafil (Viagra) attenuates ischemic cardiomyopathy and improves left ventricular function in mice. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 294, H1398-H1406.	1.5	138

Fadi N Salloum

#	Article	IF	CITATIONS
19	Sildenafil increases chemotherapeutic efficacy of doxorubicin in prostate cancer and ameliorates cardiac dysfunction. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18202-18207.	3.3	138
20	Phosphodiesterase-5 Inhibitor, Tadalafil, Protects Against Myocardial Ischemia/Reperfusion Through Protein-Kinase G–Dependent Generation of Hydrogen Sulfide. Circulation, 2009, 120, S31-6.	1.6	136
21	Mammalian Target of Rapamycin (mTOR) Inhibition with Rapamycin Improves Cardiac Function in Type 2 Diabetic Mice. Journal of Biological Chemistry, 2014, 289, 4145-4160.	1.6	130
22	The Inflammasome in Myocardial Injury and Cardiac Remodeling. Antioxidants and Redox Signaling, 2015, 22, 1146-1161.	2.5	129
23	Pharmacologic Inhibition of the NLRP3 Inflammasome Preserves Cardiac Function After Ischemic and Nonischemic Injury in the Mouse. Journal of Cardiovascular Pharmacology, 2015, 66, 1-8.	0.8	128
24	Alpha-1 antitrypsin inhibits caspase-1 and protects from acute myocardial ischemia–reperfusion injury. Journal of Molecular and Cellular Cardiology, 2011, 51, 244-251.	0.9	127
25	ERK phosphorylation mediates sildenafil-induced myocardial protection against ischemia-reperfusion injury in mice. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H1236-H1243.	1.5	121
26	MicroRNAs: New Players in Cardiac Injury and Protection. Molecular Pharmacology, 2011, 80, 558-564.	1.0	119
27	Cobalt chloride induces delayed cardiac preconditioning in mice through selective activation of HIF-1α and AP-1 and iNOS signaling. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H2369-H2375.	1.5	118
28	Sildenafil and vardenafil but not nitroglycerin limit myocardial infarction through opening of mitochondrial KATP channels when administered at reperfusion following ischemia in rabbits. Journal of Molecular and Cellular Cardiology, 2007, 42, 453-458.	0.9	115
29	Rapamycin protects against myocardial ischemia–reperfusion injury through JAK2–STAT3 signaling pathway. Journal of Molecular and Cellular Cardiology, 2012, 53, 858-869.	0.9	109
30	Sildenafil (Viagra) attenuates ischemic cardiomyopathy and improves left ventricular function in mice. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H1398-H1406.	1.5	102
31	Interleukinâ€lβ modulation using a genetically engineered antibody prevents adverse cardiac remodelling following acute myocardial infarction in the mouse. European Journal of Heart Failure, 2010, 12, 319-322.	2.9	102
32	Galectin-1 Controls Cardiac Inflammation and Ventricular Remodeling during Acute Myocardial Infarction. American Journal of Pathology, 2013, 182, 29-40.	1.9	99
33	Induction of MicroRNA-21 With Exogenous Hydrogen Sulfide Attenuates Myocardial Ischemic and Inflammatory Injury in Mice. Circulation: Cardiovascular Genetics, 2014, 7, 311-320.	5.1	97
34	Vardenafil: a novel type 5 phosphodiesterase inhibitor reduces myocardial infarct size following ischemia/reperfusion injury via opening of mitochondrial KATP channels in rabbits. Journal of Molecular and Cellular Cardiology, 2006, 40, 405-411.	0.9	96
35	Identification of Protein Disulfide Isomerase as a Cardiomyocyte Survival Factor in Ischemic Cardiomyopathy. Journal of the American College of Cardiology, 2007, 50, 1029-1037.	1.2	96
36	Reperfusion therapy with recombinant human relaxin-2 (Serelaxin) attenuates myocardial infarct size and NLRP3 inflammasome following ischemia/reperfusion injury via eNOS-dependent mechanism. Cardiovascular Research, 2017, 113, cvw246.	1.8	78

Fadi N Salloum

#	Article	IF	CITATIONS
37	Cyclic Guanosine Monophosphate Signaling and Phosphodiesterase-5 Inhibitors in Cardioprotection. Journal of the American College of Cardiology, 2012, 59, 1921-1927.	1.2	77
38	Protein kinase C plays an essential role in sildenafil-induced cardioprotection in rabbits. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H1455-H1460.	1.5	74
39	Anti-Inflammatory and Cardioprotective Effects of Tadalafil in Diabetic Mice. PLoS ONE, 2012, 7, e45243.	1.1	72
40	Phosphodiesterase-5 inhibitor tadalafil attenuates oxidative stress and protects against myocardial ischemia/reperfusion injury in type 2 diabetic mice. Free Radical Biology and Medicine, 2013, 60, 80-88.	1.3	72
41	Mitigation of the progression of heart failure with sildenafil involves inhibition of RhoA/Rho-kinase pathway. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H2272-H2279.	1.5	71
42	Interleukin-1 Trap Attenuates Cardiac Remodeling After Experimental Acute Myocardial Infarction in Mice. Journal of Cardiovascular Pharmacology, 2010, 55, 117-122.	0.8	70
43	Activation of hypoxia-inducible factor-1 via prolyl-4 hydoxylase-2 gene silencing attenuates acute inflammatory responses in postischemic myocardium. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H1571-H1580.	1.5	65
44	cGMP-Hydrolytic Activity and Its Inhibition by Sildenafil in Normal and Failing Human and Mouse Myocardium. Journal of Pharmacology and Experimental Therapeutics, 2009, 330, 884-891.	1.3	65
45	Alterations in the Interleukin-1/Interleukin-1 Receptor Antagonist Balance Modulate Cardiac Remodeling following Myocardial Infarction in the Mouse. PLoS ONE, 2011, 6, e27923.	1.1	64
46	Independent roles of the priming and the triggering of the NLRP3 inflammasome in the heart. Cardiovascular Research, 2015, 105, 203-212.	1.8	64
47	Sacubitril/Valsartan Averts AdverseÂPost-Infarction Ventricular RemodelingÂand Preserves SystolicÂFunction in Rabbits. Journal of the American College of Cardiology, 2018, 72, 2342-2356.	1.2	63
48	Evidence that NOS2 acts as a trigger and mediator of late preconditioning induced by acute systemic hypoxia. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H5-H12.	1.5	62
49	Cinaciguat, a novel activator of soluble guanylate cyclase, protects against ischemia/reperfusion injury: role of hydrogen sulfide. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H1347-H1354.	1.5	62
50	Preconditioning by Phosphodiesterase-5 Inhibition Improves Therapeutic Efficacy of Adipose-Derived Stem Cells Following Myocardial Infarction in Mice. Stem Cells, 2012, 30, 326-335.	1.4	56
51	Hydrogen sulfide and cardioprotection — Mechanistic insights and clinical translatability. , 2015, 152, 11-17.		56
52	Pharmacologic Inhibition of Myeloid Differentiation Factor 88 (MyD88) Prevents Left Ventricular Dilation and Hypertrophy After Experimental Acute Myocardial Infarction in the Mouse. Journal of Cardiovascular Pharmacology, 2010, 55, 385-390.	0.8	55
53	Sildenafil Citrate (Viagra) Induces Cardioprotective Effects after Ischemia/Reperfusion Injury in Infant Rabbits. Pediatric Research, 2005, 57, 22-27.	1.1	52
54	Role of MicroRNAs in Cardiac Preconditioning. Journal of Cardiovascular Pharmacology, 2010, 56, 581-588.	0.8	52

#	Article	IF	CITATIONS
55	Sirtuin 1 (SIRT1) Activation Mediates Sildenafil Induced Delayed Cardioprotection against Ischemia-Reperfusion Injury in Mice. PLoS ONE, 2014, 9, e86977.	1.1	51
56	Sperm-Associated Antigen–17 Gene Is Essential for Motile Cilia Function and Neonatal Survival. American Journal of Respiratory Cell and Molecular Biology, 2013, 48, 765-772.	1.4	50
57	Inhibition of mammalian target of rapamycin protects against reperfusion injury in diabetic heart through STAT3 signaling. Basic Research in Cardiology, 2015, 110, 31.	2.5	50
58	Remote ischemic preconditioning for myocardial protection: update on mechanisms and clinical relevance. Molecular and Cellular Biochemistry, 2015, 402, 41-49.	1.4	49
59	A mouse model of heart failure with preserved ejection fraction due to chronic infusion of a low subpressor dose of angiotensin II. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H771-H778.	1.5	49
60	Hypoxia Inducible Factor-1 Upregulates Adiponectin in Diabetic Mouse Hearts And Attenuates Post-Ischemic Injury. Journal of Cardiovascular Pharmacology, 2008, 51, 178-187.	0.8	45
61	Deciphering Non-coding RNAs in Cardiovascular Health and Disease. Frontiers in Cardiovascular Medicine, 2018, 5, 73.	1.1	44
62	Curcumin prevents cardiac remodeling secondary to chronic renal failure through deactivation of hypertrophic signaling in rats. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H975-H984.	1.5	43
63	Krüppel-Like Factor 2 Is Required for Normal Mouse Cardiac Development. PLoS ONE, 2013, 8, e54891.	1.1	41
64	Reperfusion Therapy with Rapamycin Attenuates Myocardial Infarction through Activation of AKT and ERK. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-16.	1.9	41
65	Prolyl hydroxylase inhibition attenuates post-ischemic cardiac injury via induction of endoplasmic reticulum stress genes. Vascular Pharmacology, 2009, 51, 110-118.	1.0	40
66	Emerging new uses of phosphodiesterase-5 inhibitors in cardiovascular diseases. Experimental and Clinical Cardiology, 2011, 16, e30-5.	1.3	40
67	Cardioprotective function of mitochondrial-targeted and transcriptionally inactive STAT3 against ischemia and reperfusion injury. Basic Research in Cardiology, 2015, 110, 53.	2.5	37
68	Functional analysis of molecular and pharmacological modulators of mitochondrial fatty acid oxidation. Scientific Reports, 2020, 10, 1450.	1.6	37
69	Right Ventricular Dysfunction following Acute Myocardial Infarction in the Absence of Pulmonary Hypertension in the Mouse. PLoS ONE, 2011, 6, e18102.	1.1	33
70	Mitochondrial H ₂ S Regulates BCAA Catabolism in Heart Failure. Circulation Research, 2022, 131, 222-235.	2.0	31
71	Right Ventricular Cardiomyocyte Apoptosis in Patients With Acute Myocardial Infarction of the Left Ventricular Wall. American Journal of Cardiology, 2008, 102, 658-662.	0.7	30
72	Apoptosis in Patients With Acute Myocarditis. American Journal of Cardiology, 2009, 104, 995-1000.	0.7	30

#	Article	IF	CITATIONS
73	Anakinra in Experimental Acute Myocardial Infarction—Does Dosage or Duration of Treatment Matter?. Cardiovascular Drugs and Therapy, 2009, 23, 129-135.	1.3	30
74	Targeting the Innate Immune Response to Improve Cardiac Graft Recovery after Heart Transplantation: Implications for the Donation after Cardiac Death. International Journal of Molecular Sciences, 2016, 17, 958.	1.8	27
75	Medial calcification in the arterial wall of smooth muscle cellâ€specific <i>Smpd1</i> transgenic mice: A ceramideâ€mediated vasculopathy. Journal of Cellular and Molecular Medicine, 2020, 24, 539-553.	1.6	26
76	Glycolipid RC-552 induces delayed preconditioning-like effect via iNOS-dependent pathway in mice. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 277, H2418-H2424.	1.5	25
77	Beetroot juice reduces infarct size and improves cardiac function following ischemia–reperfusion injury: Possible involvement of endogenous H ₂ S. Experimental Biology and Medicine, 2015, 240, 669-681.	1.1	24
78	Protective Effects of Parecoxib, a Cyclo-Oxygenase-2 Inhibitor, in Postinfarction Remodeling in the Rat. Journal of Cardiovascular Pharmacology, 2007, 50, 571-577.	0.8	22
79	Hydrogen sulfide mediates the cardioprotective effects of gene therapy with PKG-lα. Basic Research in Cardiology, 2015, 110, 42.	2.5	22
80	Relaxin' the Heart. Journal of Cardiovascular Pharmacology and Therapeutics, 2016, 21, 353-362.	1.0	22
81	Heart Disease and Relaxin: New Actions for an Old Hormone. Trends in Endocrinology and Metabolism, 2018, 29, 338-348.	3.1	22
82	STAT3-miR-17/20 signalling axis plays a critical role in attenuating myocardial infarction following rapamycin treatment in diabetic mice. Cardiovascular Research, 2020, 116, 2103-2115.	1.8	21
83	Inflammasome Formation in Granulomas in Cardiac Sarcoidosis. Circulation: Arrhythmia and Electrophysiology, 2019, 12, e007582.	2.1	20
84	Abnormal Lysosomal Positioning and Small Extracellular Vesicle Secretion in Arterial Stiffening and Calcification of Mice Lacking Mucolipin 1 Gene. International Journal of Molecular Sciences, 2020, 21, 1713.	1.8	20
85	Adenosine A1 receptor mediates delayed cardioprotective effect of sildenafil in mouse. Journal of Molecular and Cellular Cardiology, 2007, 43, 545-551.	0.9	19
86	Tadalafil Prevents Acute Heart Failure with Reduced Ejection Fraction in Mice. Cardiovascular Drugs and Therapy, 2014, 28, 493-500.	1.3	19
87	Sildenafil-induced cardioprotection in rabbits. Cardiovascular Research, 2003, 60, 700-701.	1.8	18
88	Chronic treatment with novel nanoformulated micelles of rapamycin, Rapatar, protects diabetic heart against ischaemia/reperfusion injury. British Journal of Pharmacology, 2017, 174, 4771-4784.	2.7	18
89	Sodium Nitrite Fails to Limit Myocardial Infarct Size: Results from the CAESAR Cardioprotection Consortium (LB645). FASEB Journal, 2014, 28, LB645.	0.2	18
90	Improvement of Cardiac Function With Parecoxib, A Cyclo-oxygenase-2 Inhibitor, in a Rat Model of Ischemic Heart Failure. Journal of Cardiovascular Pharmacology, 2007, 49, 416-418.	0.8	17

#	Article	IF	CITATIONS
91	Parecoxib Inhibits Apoptosis in Acute Myocardial Infarction Due to Permanent Coronary Ligation But Not Due to Ischemia-Reperfusion. Journal of Cardiovascular Pharmacology, 2009, 53, 495-498.	0.8	17
92	Intracellular Function of Interleukin-1 Receptor Antagonist in Ischemic Cardiomyocytes. PLoS ONE, 2013, 8, e53265.	1.1	16
93	A Preclinical Translational Study of the Cardioprotective Effects of Plasma-Derived Alpha-1 Anti-trypsin in Acute Myocardial Infarction. Journal of Cardiovascular Pharmacology, 2017, 69, 273-278.	0.8	15
94	Remote Ischemic Pre-Conditioning Attenuates Adverse Cardiac Remodeling and Mortality Following Doxorubicin Administration in Mice. JACC: CardioOncology, 2019, 1, 221-234.	1.7	15
95	Administration of Sildenafil at Reperfusion Fails to Reduce Infarct Size: Results from the CAESAR Cardioprotection Consortium (LB650). FASEB Journal, 2014, 28, LB650.	0.2	15
96	Anti-ischemic effects of sildenafil, vardenafil and tadalafil in heart. International Journal of Impotence Research, 2007, 19, 226-227.	1.0	14
97	Cardiac regenerative potential of adipose tissue-derived stem cells. Acta Physiologica Hungarica, 2009, 96, 251-265.	0.9	14
98	Development of Pulmonary Hypertension in Heart Failure With Preserved Ejection Fraction. Progress in Cardiovascular Diseases, 2016, 59, 52-58.	1.6	14
99	B7â€33, a Functionally Selective Relaxin Receptor 1 Agonist, Attenuates Myocardial Infarction–Related Adverse Cardiac Remodeling in Mice. Journal of the American Heart Association, 2020, 9, e015748.	1.6	13
100	Decreased smooth muscle function, peristaltic activity, and gastrointestinal transit in dystrophic (<i>mdx</i>) mice. Neurogastroenterology and Motility, 2021, 33, e13968.	1.6	13
101	cis-3, 4′, 5-Trimethoxy-3′-aminostilbene disrupts tumor vascular perfusion without damaging normal organ perfusion. Cancer Chemotherapy and Pharmacology, 2009, 63, 191-200.	1.1	12
102	Hydrogen Sulfide Therapy Suppresses Cofilin-2 and Attenuates Ischemic Heart Failure in a Mouse Model of Myocardial Infarction. Journal of Cardiovascular Pharmacology and Therapeutics, 2020, 25, 472-483.	1.0	11
103	Cardiac Effects of Phosphodiesterase-5 Inhibitors: Efficacy and Safety. Cardiovascular Drugs and Therapy, 2023, 37, 793-806.	1.3	10
104	Chronic inÂvivo angiotensin II administration differentially modulates the slow delayed rectifier channels in atrial and ventricular myocytes. Heart Rhythm, 2019, 16, 108-116.	0.3	6
105	Cardiac complications of cancer therapies. Advances in Cancer Research, 2022, , 167-214.	1.9	5
106	Cardiac Gene Therapy With RelaxinÂReceptor 1 Overexpression Protects Against Acute MyocardialÂInfarction. JACC Basic To Translational Science, 2022, 7, 53-63.	1.9	4
107	Chronic treatment with serelaxin mitigates adverse remodeling in a murine model of ischemic heart failure and modulates bioactive sphingolipid signaling. Scientific Reports, 2022, 12, .	1.6	4
108	Nonurologic applications of phosphodiesterase type 5 inhibitors. Current Sexual Health Reports, 2007, 4, 64-70.	0.4	2

#	Article	IF	CITATIONS
109	2014 AHA Late-Breaking Basic Science Abstracts. Circulation Research, 2014, 115, .	2.0	2
110	PDE5 inhibitor sildenafil attenuates cardiac microRNA 214 upregulation and pro-apoptotic signaling after chronic alcohol ingestion in mice. Molecular and Cellular Biochemistry, 2020, 471, 189-201.	1.4	2
111	Pharmocologic Inhibition of Myeloid Differentiation Factor 88 (MyD88) Prevents Left Ventricular Dilation and Hypertrophy After Experimental Acute Myocardial Infarction in the Mouse: Erratum. Journal of Cardiovascular Pharmacology, 2011, 57, 272.	0.8	1
112	Osteopontin in HFpEF. Journal of the American College of Cardiology, 2019, 73, 2719-2721.	1.2	1
113	Sacubitril/Valsartan for the Prevention and Treatment of Postinfarction Heart Failure: Ready to Use?. Journal of Cardiovascular Pharmacology, 2021, 78, 331-333.	0.8	1
114	Abstract 2320: Long Acting Erectile Dysfunction Drug Tadalafil Limits Myocardial Ischemia/Reperfusion Injury and Preserves Left Ventricular Function through Protein Kinase G Dependent Pathway. Circulation, 2008, 118, .	1.6	1
115	Phosphodiesterase-5 inhibition and cardioprotection: potential role of hydrogen sulfide. BMC Pharmacology, 2009, 9, .	0.4	0
116	"Mighty-chondrial―DNA repair for mitigation of cardiac injury: focus on "A novel mtDNA repair fusion protein attenuates maladaptive remodeling and preserves cardiac function in heart failure― American Journal of Physiology - Heart and Circulatory Physiology, 2018, 314, H268-H269.	1.5	0
117	The Bslc2–/– Mouse. JACC Basic To Translational Science, 2019, 4, 938-939.	1.9	0
118	Enhanced Arterial Stiffening in Obese Mice with Smooth Muscle‧pecific Overexpression of <i>Smpd1</i> gene. FASEB Journal, 2021, 35, .	0.2	0
119	2531 Sildenafil (Vlagra) induces delayed preconditioning through iNOS-dependent pathway in mouse heart. European Heart Journal, 2003, 24, 476.	1.0	0
120	BAY 58â€2667, a Novel NOâ€Independent Activator of Soluble Guanylate Cyclase, Protects against Ischemia/Reperfusion Injury: Potential Role of Hydrogen Sulfide Signaling. FASEB Journal, 2010, 24, 787.4.	0.2	0
121	Rapamycin (Sirolimus)–induced protection against ischemiaâ€reperfusion injury is mediated through AMPK, Akt and JAK/STAT pathways in mouse heart. FASEB Journal, 2010, 24, 601.6.	0.2	0
122	Mitigation of Heart Failure Progression with Sildenafil Involves Inhibition of RhoA/Rhoâ€Kinase Pathway. FASEB Journal, 2010, 24, 601.13.	0.2	0
123	Adenoviral transfer of PKGIα; attenuates apoptosis and necrosis in adipose derived stem cells. FASEB Journal, 2010, 24, lb34.	0.2	0
124	mTOR inhibition protects diabetic heart against ischemia/reperfusion injury through STAT3 activation (1078.5). FASEB Journal, 2014, 28, .	0.2	0
125	Acute Alcohol Treatment and Cardiac Dysfunction in Obese Diabetic Mice: Role of PDE5 and MicroRNAâ€21. FASEB Journal, 2015, 29, 1020.9.	0.2	0
126	Targeted Gene Therapy with RXFP1 Attenuates Myocardial Infarction and Preserves Left Ventricular Function in Mice. FASEB Journal, 2018, 32, 580.14.	0.2	0

#	Article	IF	CITATIONS
127	Hydrogen Sulfide Improves Aberrant Gastric Smooth Muscle Function in Duchenne Muscular Dystrophy Mice. FASEB Journal, 2019, 33, 821.8.	0.2	Ο
128	Restoration of Contractile Protein Expression and Colonic Smooth Muscle Function by H 2 S in Duchenne Muscular Dystrophy Mice. FASEB Journal, 2019, 33, 821.5.	0.2	0
129	Modeling Marginal Zone Lymphomagenesis. Blood, 2020, 136, 31-31.	0.6	Ο