List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/667703/publications.pdf Version: 2024-02-01

SHAOUE SONC

#	Article	IF	CITATIONS
1	Recent analytical tools to mitigate carbon-based pollution: New insights by using wavelet coherence for a sustainable environment. Environmental Research, 2022, 212, 113074.	3.7	18
2	The importance of hydroxymethanesulfonate (HMS) in winter haze episodes in North China Plain. Environmental Research, 2022, 211, 113093.	3.7	7
3	Ammonium Chloride Associated Aerosol Liquid Water Enhances Haze in Delhi, India. Environmental Science & Technology, 2022, 56, 7163-7173.	4.6	21
4	Deep decarbonization of the Indian economy: 2050 prospects for wind, solar, and green hydrogen. IScience, 2022, 25, 104399.	1.9	9
5	Vertically Resolved Aerosol Chemistry in the Low Boundary Layer of Beijing in Summer. Environmental Science & Technology, 2022, 56, 9312-9324.	4.6	6
6	Ozone pollution in the North China Plain spreading into the late-winter haze season. Proceedings of the United States of America, 2021, 118, .	3.3	138
7	Projected changes in wind power potential over China and India in high resolution climate models. Environmental Research Letters, 2021, 16, 034057.	2.2	14
8	Sensitivity of modeled Indian monsoon to Chinese and Indian aerosol emissions. Atmospheric Chemistry and Physics, 2021, 21, 3593-3605.	1.9	13
9	Aerosol acidity and liquid water content regulate the dry deposition of inorganic reactive nitrogen. Atmospheric Chemistry and Physics, 2021, 21, 6023-6033.	1.9	28
10	Control of particulate nitrate air pollution in China. Nature Geoscience, 2021, 14, 389-395.	5.4	139
11	Economic and technological feasibility of using power-to-hydrogen technology under higher wind penetration in China. Renewable Energy, 2021, 173, 569-580.	4.3	46
12	Sustained methane emissions from China after 2012 despite declining coal production and rice-cultivated area. Environmental Research Letters, 2021, 16, 104018.	2.2	19
13	Global modeling of heterogeneous hydroxymethanesulfonate chemistry. Atmospheric Chemistry and Physics, 2021, 21, 457-481.	1.9	17
14	Enhanced aerosol particle growth sustained by high continental chlorine emission in India. Nature Geoscience, 2021, 14, 77-84.	5.4	94
15	Projected changes in seasonal and extreme summertime temperature and precipitation in India in response to COVID-19 recovery emissions scenarios. Environmental Research Letters, 2021, 16, 114025.	2.2	9
16	Production of hydrogen from offshore wind in China and cost-competitive supply to Japan. Nature Communications, 2021, 12, 6953.	5.8	47
17	Using High-Temporal-Resolution Ambient Data to Investigate Gas-Particle Partitioning of Ammonium over Different Seasons. Environmental Science & Technology, 2020, 54, 9834-9843.	4.6	10
18	Roles of RH, aerosol pH and sources in concentrations of secondary inorganic aerosols, during different pollution periods. Atmospheric Environment, 2020, 241, 117770.	1.9	21

#	Article	IF	CITATIONS
19	Ozone pollution over China and India: seasonality and sources. Atmospheric Chemistry and Physics, 2020, 20, 4399-4414.	1.9	79
20	Contribution of hydroxymethanesulfonate (HMS) to severe winter haze in the North China Plain. Atmospheric Chemistry and Physics, 2020, 20, 5887-5897.	1.9	40
21	Fast sulfate formation from oxidation of SO2 by NO2 and HONO observed in Beijing haze. Nature Communications, 2020, 11, 2844.	5.8	161
22	China's emission control strategies have suppressed unfavorable influences of climate on wintertime PM _{2.5} concentrations in Beijing since 2002. Atmospheric Chemistry and Physics, 2020, 20, 1497-1505.	1.9	47
23	Contribution of Particulate Nitrate Photolysis to Heterogeneous Sulfate Formation for Winter Haze in China. Environmental Science and Technology Letters, 2020, 7, 632-638.	3.9	43
24	Chemical Differences Between PM ₁ and PM _{2.5} in Highly Polluted Environment and Implications in Air Pollution Studies. Geophysical Research Letters, 2020, 47, e2019GL086288.	1.5	72
25	An interlaboratory comparison of aerosol inorganic ion measurements by ion chromatography: implications for aerosol pH estimate. Atmospheric Measurement Techniques, 2020, 13, 6325-6341.	1.2	16
26	Seasonal prediction of Indian wintertime aerosol pollution using the ocean memory effect. Science Advances, 2019, 5, eaav4157.	4.7	26
27	Aerosol pH Dynamics During Haze Periods in an Urban Environment in China: Use of Detailed, Hourly, Speciated Observations to Study the Role of Ammonia Availability and Secondary Aerosol Formation and Urban Environment. Journal of Geophysical Research D: Atmospheres, 2019, 124, 9730-9742.	1.2	35
28	The role of sulfate and its corresponding S(IV)+NO2 formation pathway during the evolution of haze in Beijing. Science of the Total Environment, 2019, 687, 741-751.	3.9	20
29	Thermodynamic Modeling Suggests Declines in Water Uptake and Acidity of Inorganic Aerosols in Beijing Winter Haze Events during 2014/2015–2018/2019. Environmental Science and Technology Letters, 2019, 6, 752-760.	3.9	56
30	Bottom-Up Estimates of Coal Mine Methane Emissions in China: A Gridded Inventory, Emission Factors, and Trends. Environmental Science and Technology Letters, 2019, 6, 473-478.	3.9	52
31	The Influence of Dynamics and Emissions Changes on China's Wintertime Haze. Journal of Applied Meteorology and Climatology, 2019, 58, 1603-1611.	0.6	3
32	Heterogeneous sulfate aerosol formation mechanisms during wintertime Chinese haze events: air quality model assessment using observations of sulfate oxygen isotopes in Beijing. Atmospheric Chemistry and Physics, 2019, 19, 6107-6123.	1.9	137
33	Possible heterogeneous chemistry of hydroxymethanesulfonate (HMS) in northern China winter haze. Atmospheric Chemistry and Physics, 2019, 19, 1357-1371.	1.9	97
34	High-Resolution Data Sets Unravel the Effects of Sources and Meteorological Conditions on Nitrate and Its Gas-Particle Partitioning. Environmental Science & amp; Technology, 2019, 53, 3048-3057.	4.6	46
35	Interactions between aerosol organic components and liquid water content during haze episodes in Beijing. Atmospheric Chemistry and Physics, 2019, 19, 12163-12174.	1.9	29
36	Evaluating EDGARv4.tox2 speciated mercury emissions ex-post scenarios and their impacts on modelled global and regional wet deposition patterns. Atmospheric Environment, 2018, 184, 56-68.	1.9	50

#	Article	IF	CITATIONS
37	Synthesis of the Southeast Atmosphere Studies: Investigating Fundamental Atmospheric Chemistry Questions. Bulletin of the American Meteorological Society, 2018, 99, 547-567.	1.7	62
38	Understanding factors influencing the detection of mercury policies in modelled Laurentian Great Lakes wet deposition. Environmental Sciences: Processes and Impacts, 2018, 20, 1373-1389.	1.7	2
39	Understanding mercury oxidation and air–snow exchange on the East Antarctic Plateau: a modeling study. Atmospheric Chemistry and Physics, 2018, 18, 15825-15840.	1.9	18
40	Secular decrease of wind power potential in India associated with warming in the Indian Ocean. Science Advances, 2018, 4, eaat5256.	4.7	28
41	The impact of power generation emissions on ambient PM2.5 pollution and human health in China and India. Environment International, 2018, 121, 250-259.	4.8	111
42	Fine-particle pH for Beijing winter haze as inferred from different thermodynamic equilibrium models. Atmospheric Chemistry and Physics, 2018, 18, 7423-7438.	1.9	208
43	Consumptionâ€Based Accounting of Global Anthropogenic CH ₄ Emissions. Earth's Future, 2018, 6, 1349-1363.	2.4	39
44	Multi-model study of mercury dispersion in the atmosphere: atmospheric processes and model evaluation. Atmospheric Chemistry and Physics, 2017, 17, 5271-5295.	1.9	76
45	Multi-model study of mercury dispersion in the atmosphere: vertical and interhemispheric distribution of mercury species. Atmospheric Chemistry and Physics, 2017, 17, 6925-6955.	1.9	30
46	Origin of oxidized mercury in the summertime free troposphere over the southeastern US. Atmospheric Chemistry and Physics, 2016, 16, 1511-1530.	1.9	68
47	Chemical cycling and deposition of atmospheric mercury in polar regions: review of recent measurements and comparison with models. Atmospheric Chemistry and Physics, 2016, 16, 10735-10763.	1.9	63
48	Constraints from observations and modeling on atmosphere–surface exchange of mercury in eastern North America. Elementa, 2016, 4, .	1.1	4
49	Top-down constraints on atmospheric mercury emissions and implications for global biogeochemical cycling. Atmospheric Chemistry and Physics, 2015, 15, 7103-7125.	1.9	96
50	Oxidation of mercury by bromine in the subtropical Pacific free troposphere. Geophysical Research Letters, 2015, 42, 10,494.	1.5	57
51	Diurnal variations of fossil and nonfossil carbonaceous aerosols in Beijing. Atmospheric Environment, 2015, 122, 349-356.	1.9	5
52	Characteristics of On-road Diesel Vehicles: Black Carbon Emissions in Chinese Cities Based on Portable Emissions Measurement. Environmental Science & Technology, 2015, 49, 13492-13500.	4.6	57
53	Mass concentrations and temporal profiles of PM10, PM2.5 and PM1 near major urban roads in Beijing. Frontiers of Environmental Science and Engineering, 2015, 9, 675-684.	3.3	10
54	Characterization and source apportionment of particulate PAHs in the roadside environment in Beijing. Science of the Total Environment, 2014, 470-471, 76-83.	3.9	96

#	Article	IF	CITATIONS
55	Trend analysis from 1970 to 2008 and model evaluation of EDGARv4 global gridded anthropogenic mercury emissions. Science of the Total Environment, 2014, 494-495, 337-350.	3.9	94
56	Chemical characterization of roadside PM2.5 and black carbon in Macao during a summer campaign. Atmospheric Pollution Research, 2014, 5, 381-387.	1.8	24
57	Black carbon at a roadside site in Beijing: Temporal variations and relationships with carbon monoxide and particle number size distribution. Atmospheric Environment, 2013, 77, 213-221.	1.9	61
58	Chemical characteristics of size-resolved PM2.5 at a roadside environment in Beijing, China. Environmental Pollution, 2012, 161, 215-221.	3.7	79