
Christer Aakeroy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6676955/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	The hydrogen bond and crystal engineering. Chemical Society Reviews, 1993, 22, 397-407.	38.1	1,067
2	Recent advances in crystal engineering. CrystEngComm, 2010, 12, 22-43.	2.6	692
3	Building co-crystals with molecular sense and supramolecular sensibility. CrystEngComm, 2005, 7, 439.	2.6	670
4	Crystal Engineering: Strategies and Architectures. Acta Crystallographica Section B: Structural Science, 1997, 53, 569-586.	1.8	441
5	"Total Synthesis―Supramolecular Style: Design and Hydrogen-Bond-Directed Assembly of Ternary Supermolecules. Angewandte Chemie - International Edition, 2001, 40, 3240-3242.	13.8	426
6	Cocrystal or Salt:  Does It Really Matter?. Molecular Pharmaceutics, 2007, 4, 317-322.	4.6	389
7	Structural Competition between Hydrogen Bonds and Halogen Bonds. Journal of the American Chemical Society, 2007, 129, 13772-13773.	13.7	365
8	Definition of the chalcogen bond (IUPAC Recommendations 2019). Pure and Applied Chemistry, 2019, 91, 1889-1892.	1.9	322
9	Using Cocrystals To Systematically Modulate Aqueous Solubility and Melting Behavior of an Anticancer Drug. Journal of the American Chemical Society, 2009, 131, 17048-17049.	13.7	264
10	A High-Yielding Supramolecular Reaction. Journal of the American Chemical Society, 2002, 124, 14425-14432.	13.7	262
11	A Versatile Route to Porous Solids: Organic-Inorganic Hybrid Materials Assembled through Hydrogen Bonds. Angewandte Chemie - International Edition, 1999, 38, 1815-1819.	13.8	252
12	Supramolecular Hierarchy among Halogenâ€Bond Donors. Chemistry - A European Journal, 2013, 19, 16240-16247.	3.3	202
13	Do Polymorphic Compounds Make Good Cocrystallizing Agents? A Structural Case Study that Demonstrates the Importance of Synthon Flexibility. Crystal Growth and Design, 2003, 3, 159-165.	3.0	168
14	Supramolecular Synthesis Based on a Combination of Hydrogen and Halogen Bonds. Crystal Growth and Design, 2009, 9, 432-441.	3.0	147
15	Supramolecular reagents: versatile tools for non-covalent synthesis. Chemical Communications, 2005, , 2820.	4.1	126
16	Competing hydrogen-bond and halogen-bond donors in crystal engineering. CrystEngComm, 2013, 15, 3125-3136.	2.6	117
17	Deliberate combination of coordination polymers and hydrogen bonds in a supramolecular design strategy for inorganic/organic hybrid networks. Chemical Communications, 2000, , 935-936.	4.1	114
18	Avoiding "Synthon Crossover―in Crystal Engineering with Halogen Bonds and Hydrogen Bonds. Crystal Growth and Design, 2011, 11, 5333-5336.	3.0	107

#	Article	IF	CITATIONS
19	Co-crystal synthesis: fact, fancy, and great expectations. Chemical Communications, 2018, 54, 14047-14060.	4.1	106
20	Toward High-Yielding Supramolecular Synthesis:  Directed Assembly of Ditopic Imidazoles/Benzimidazoles and Dicarboxylic Acids into Cocrystals via Selective Oâ^'H···N Hydrogen Bonds. Crystal Growth and Design, 2005, 5, 865-873.	3.0	101
21	A systematic structural study of halogen bonding <i>versus</i> hydrogen bonding within competitive supramolecular systems. IUCrJ, 2015, 2, 498-510.	2.2	100
22	The Oxime Functionality:Â A Versatile Tool for Supramolecular Assembly of Metal-Containing Hydrogen-Bonded Architectures. Journal of the American Chemical Society, 1998, 120, 7383-7384.	13.7	96
23	Cyanophenyloximes:  Reliable and Versatile Tools for Hydrogen-Bond Directed Supramolecular Synthesis of Cocrystals. Crystal Growth and Design, 2006, 6, 1033-1042.	3.0	96
24	Combining halogen bonds and hydrogen bonds in the modular assembly of heteromeric infinite 1-D chains. Chemical Communications, 2007, , 4236.	4.1	96
25	2-Acetaminopyridine:  A Highly Effective Cocrystallizing Agent. Crystal Growth and Design, 2006, 6, 474-480.	3.0	91
26	Crystal Engineering of Energetic Materials: Co rystals of Ethylenedinitramine (EDNA) with Modified Performance and Improved Chemical Stability. Chemistry - A European Journal, 2015, 21, 11029-11037.	3.3	84
27	Ten years of co-crystal synthesis; the good, the bad, and the ugly. CrystEngComm, 2008, 10, 1816.	2.6	80
28	Mechanically Responsive Crystalline Coordination Polymers with Controllable Elasticity. Angewandte Chemie - International Edition, 2018, 57, 14801-14805.	13.8	80
29	Molecular electrostatic potential dependent selectivity of hydrogen bonding. New Journal of Chemistry, 2015, 39, 822-828.	2.8	79
30	Assembly of 2-D inorganic/organic lamellar structures through a combination of copper(I) coordination polymers and self-complementary hydrogen bonds â€. Dalton Transactions RSC, 2000, , 3869-3872.	2.3	78
31	Practical crystal engineering using halogen bonding: A hierarchy based on calculated molecular electrostatic potential surfaces. Journal of Molecular Structure, 2014, 1072, 20-27.	3.6	77
32	Controlling molecular and supramolecular structure of hydrogen-bonded coordination compounds. CrystEngComm, 2004, 6, 413-418.	2.6	75
33	Constructing, deconstructing, and reconstructing ternary supermolecules. Chemical Communications, 2007, , 3936.	4.1	75
34	Crystal Engineering with Iodoethynylnitrobenzenes: A Group of Highly Effective Halogen-Bond Donors. Crystal Growth and Design, 2015, 15, 3853-3861.	3.0	74
35	Stabilizing volatile liquid chemicals using co-crystallization. Chemical Communications, 2015, 51, 2425-2428.	4.1	73
36	Electrostatic Potential Differences and Halogen-Bond Selectivity. Crystal Growth and Design, 2016, 16, 2662-2670.	3.0	73

#	Article	IF	CITATIONS
37	Heteromeric intermolecular interactions as synthetic tools for the formation of binary co-crystals. CrystEngComm, 2004, 6, 19-24.	2.6	72
38	Exploring the hydrogen-bond preference of N–H moieties in co-crystals assembled via O–H(acid)⋯N(py) intermolecular interactions. CrystEngComm, 2007, 9, 46-54.	2.6	70
39	Is there any point in making co-crystals?. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2015, 71, 387-391.	1.1	69
40	Facile synthesis and supramolecular chemistry of hydrogen bond/halogen bond-driven multi-tasking tectons. Chemical Communications, 2011, 47, 4688.	4.1	68
41	Directed assembly of dinuclear and mononuclear copper(ii)-carboxylates into infinite 1-D motifs using isonicotinamide as a high-yielding supramolecular reagent. Dalton Transactions, 2003, , 3956-3962.	3.3	67
42	The structural landscape of heteroaryl-2-imidazoles: competing halogen- and hydrogen-bond interactions. CrystEngComm, 2014, 16, 7218.	2.6	66
43	Balancing supramolecular reagents for reliable formation of co-crystals. Chemical Communications, 2006, , 1445.	4.1	63
44	Establishing a Hierarchy of Halogen Bonding by Engineering Crystals without Disorder. Crystal Growth and Design, 2013, 13, 4145-4150.	3.0	60
45	Impact and importance of electrostatic potential calculations for predicting structural patterns of hydrogen and halogen bonding. CrystEngComm, 2016, 18, 8631-8636.	2.6	60
46	Mapping out the synthetic landscape for re-crystallization, co-crystallization and salt formation. CrystEngComm, 2010, 12, 4231.	2.6	59
47	The quest for a molecular capsule assembled via halogen bonds. CrystEngComm, 2012, 14, 6366.	2.6	59
48	Ranking Relative Hydrogenâ€Bond Strengths in Hydroxybenzoic Acids for Crystalâ€Engineering Purposes. Chemistry - A European Journal, 2013, 19, 14998-15003.	3.3	58
49	Hydrogen bond patterns in aromatic and aliphatic dioximes. New Journal of Chemistry, 2003, 27, 1084-1094.	2.8	56
50	Improving success rate of hydrogen-bond driven synthesis of co-crystals. CrystEngComm, 2006, 8, 586-588.	2.6	55
51	Crystal engineering gone awry and the emergence of the boronic acid–carboxylate synthon. CrystEngComm, 2005, 7, 102-107.	2.6	54
52	Constructing molecular polygons using halogen bonding and bifurcated N-oxides. CrystEngComm, 2014, 16, 28-31.	2.6	54
53	Is conformational flexibility in a supramolecular reagent advantageous for high-yielding co-crystallization reactions?. CrystEngComm, 2005, 7, 193-201.	2.6	52
54	Co-Crystal Screening of Diclofenac. Pharmaceutics, 2011, 3, 601-614.	4.5	51

#	Article	IF	CITATIONS
55	Oxime Decorated Cavitands Functionalized through Solvent-Assisted Grinding. Organic Letters, 2011, 13, 1-3.	4.6	51
56	A versatile and green mechanochemical route for aldehyde–oxime conversions. Chemical Communications, 2012, 48, 11289.	4.1	49
57	Directed Supramolecular Assembly of Infinite 1-D M(II)-Containing Chains (M = Cu, Co, Ni) Using Structurally Bifunctional Ligands. Inorganic Chemistry, 2005, 44, 4983-4991.	4.0	48
58	Organic Assemblies of 2-pyridones with Dicarboxylic Acids. Tetrahedron, 2000, 56, 6693-6699.	1.9	46
59	Syntheses and Crystal Structures of New "Extended―Building Blocks for Crystal Engineering: (Pyridylmethylene)aminoacetophenone Oxime Ligands. Crystal Growth and Design, 2001, 1, 47-52.	3.0	46
60	Modulating the physical properties of solid forms of urea using co-crystallization technology. Chemical Communications, 2018, 54, 4657-4660.	4.1	46
61	Structural Chemistry of Oximes. Crystal Growth and Design, 2013, 13, 2687-2695.	3.0	43
62	Cocrystals and Salts of Tetrazole-Based Energetic Materials. Crystal Growth and Design, 2020, 20, 2432-2439.	3.0	42
63	Attempted assembly of discrete coordination complexes into 1-D chains using halogen bonding or halogenâ‹Thalogen interactions. CrystEngComm, 2007, 9, 421-426.	2.6	41
64	The effect of water molecules in stabilizing co-crystals of active pharmaceutical ingredients. CrystEngComm, 2012, 14, 2435.	2.6	39
65	Establishing Amide···Amide Reliability and Synthon Transferability in the Supramolecular Assembly of Metal-Containing One-Dimensional Architectures. Inorganic Chemistry, 2009, 48, 4052-4061.	4.0	38
66	Silver(<scp>i</scp>) coordination chemistry: from 1-D chains to molecular rectangles. New Journal of Chemistry, 2013, 37, 204-211.	2.8	36
67	Probing Metal Ion Complexation of Ligands with Multiple Metal Binding Sites: The Case of Spiropyrans. Chemistry - A European Journal, 2016, 22, 13976-13984.	3.3	36
68	Evaluating Competing Intermolecular Interactions through Molecular Electrostatic Potentials and Hydrogen-Bond Propensities. Crystal Growth and Design, 2018, 18, 466-478.	3.0	36
69	Altering physical properties of pharmaceutical co-crystals in a systematic manner. CrystEngComm, 2014, 16, 5870-5877.	2.6	34
70	Directed supramolecular assembly of Cu(ii)-based "paddlewheels―into infinite 1-D chains using structurally bifunctional ligands. Dalton Transactions, 2006, , 1627-1635.	3.3	30
71	Establishing Supramolecular Control over Solid-State Architectures: A Simple Mix and Match Strategy. Crystal Growth and Design, 2012, 12, 2579-2587.	3.0	30
72	A Combination of X-ray Single-Crystal Diffraction and Monte Carlo Structure Solution from X-ray Powder Diffraction Data in a Structural Investigation of 5-Bromonicotinic Acid and Solvates Thereof. Crystal Growth and Design, 2001, 1, 377-382.	3.0	27

#	Article	IF	CITATIONS
73	How robust is the hydrogen-bonded amide â€~ladder' motif?. New Journal of Chemistry, 2007, 31, 2044.	2.8	27
74	Systematic investigation of hydrogen-bond propensities for informing co-crystal design and assembly. CrystEngComm, 2019, 21, 6048-6055.	2.6	27
75	Balancing intermolecular hydrogen-bond interactions for the directed assembly of binary 1 : 1 co-crystals. New Journal of Chemistry, 2006, 30, 1452-1460.	2.8	26
76	The balance between closed and open forms of spiropyrans in the solid state. CrystEngComm, 2010, 12, 1027-1033.	2.6	26
77	Competition between hydrogen bonds and halogen bonds: a structural study. New Journal of Chemistry, 2018, 42, 10539-10547.	2.8	26
78	Diamondoid architectures from halogen-bonded halides. Chemical Communications, 2018, 54, 607-610.	4.1	26
79	Title is missing!. Structural Chemistry, 1999, 10, 229-242.	2.0	25
80	Demonstrating the Importance of Hydrogen Bonds through the Absence of Hydrogen Bonds. Crystal Growth and Design, 2001, 1, 485-489.	3.0	25
81	The Role of Halogen Bonding in Controlling Assembly and Organization of Cu(II)-Acac Based Coordination Complexes. Crystals, 2017, 7, 226.	2.2	25
82	Evaluating hydrogen-bond propensity, hydrogen-bond coordination and hydrogen-bond energy as tools for predicting the outcome of attempted co-crystallisations. Supramolecular Chemistry, 2020, 32, 81-90.	1.2	25
83	Hydrogen-bond driven assembly of a molecular capsule facilitated by supramolecular chelation. Chemical Communications, 2011, 47, 11411.	4.1	24
84	Halogen bonding or close packing? Examining the structural landscape in a series of Cu(ii)-acac complexes. Dalton Transactions, 2011, 40, 12160.	3.3	24
85	Mechanically Responsive Crystalline Coordination Polymers with Controllable Elasticity. Angewandte Chemie, 2018, 130, 15017-15021.	2.0	24
86	Organocatalysis by a multidentate halogen-bond donor: an alternative to hydrogen-bond based catalysis. New Journal of Chemistry, 2019, 43, 8311-8314.	2.8	24
87	Evaluating the Predictive Abilities of Protocols Based on Hydrogen-Bond Propensity, Molecular Complementarity, and Hydrogen-Bond Energy for Cocrystal Screening. Crystal Growth and Design, 2020, 20, 7320-7327.	3.0	24
88	Supramolecular assembly of low-dimensional silver(i) architectures: testing the reliability of the self-complementary oximeâcoxime hydrogen-bond interaction. CrystEngComm, 2002, 4, 310-314.	2.6	23
89	C-Pentyltetra(3-pyridyl)cavitand:  A Versatile Building Block for the Directed Assembly of Hydrogen-Bonded Heterodimeric Capsules. Organic Letters, 2006, 8, 2607-2610.	4.6	23
90	Competing hydrogen-bond donors: phenols vs. cyanooximes. CrystEngComm, 2013, 15, 5946.	2.6	22

#	Article	IF	CITATIONS
91	Syntheses and Crystal Structures of Versatile Supramolecular Reagents Based upon [(Benzimidazol-1-yl)methyl]-benzamides. Crystal Growth and Design, 2005, 5, 1283-1293.	3.0	21
92	Halogen-bond driven co-crystallization of potential anti-cancer compounds: a structural study. CrystEngComm, 2014, 16, 10203-10209.	2.6	21
93	Cyanooximes as effective and selective co-crystallizing agents. CrystEngComm, 2009, 11, 439-443.	2.6	20
94	Halogen-Bond Preferences in Co-crystal Synthesis. Journal of Chemical Crystallography, 2015, 45, 267-276.	1.1	20
95	Synthesis of ketoximes via a solvent-assisted and robust mechanochemical pathway. RSC Advances, 2013, 3, 8168.	3.6	19
96	Directed Assembly of acac-Based Complexes by Deliberately Fine-Tuning Electrostatic Molecular-Recognition Events. Crystal Growth and Design, 2016, 16, 7308-7317.	3.0	19
97	Ethynyl hydrogen bonds and iodoethynyl halogen bonds: a case of synthon mimicry. CrystEngComm, 2017, 19, 11-13.	2.6	19
98	Synthesis and hydrogen-bond capabilities of an amino-pyridine functionalized cavitand. CrystEngComm, 2007, 9, 211-214.	2.6	18
99	Modulating Supramolecular Reactivity Using Covalent "Switches―on a Pyrazole Platform. Crystal Growth and Design, 2012, 12, 5806-5814.	3.0	18
100	Interdependence of structure and physical properties in co-crystals of azopyridines. CrystEngComm, 2013, 15, 463-470.	2.6	17
101	Computational approaches and sigma-hole interactions: general discussion. Faraday Discussions, 2017, 203, 131-163.	3.2	17
102	Competition and selectivity in supramolecular synthesis: structural landscape around 1-(pyridylmethyl)-2,2′-biimidazoles. Faraday Discussions, 2017, 203, 371-388.	3.2	17
103	Building inorganic supramolecular architectures using principles adopted from the organic solid state. IUCrJ, 2018, 5, 13-21.	2.2	17
104	Exploring the structural landscape of 2-aminopyrazines via co-crystallizations. CrystEngComm, 2012, 14, 5845.	2.6	16
105	Halogen Bonding in Supramolecular Synthesis. Topics in Current Chemistry, 2014, 358, 155-182.	4.0	16
106	[(Benzimidazol-1-yl)methyl]benzamides as bifunctional reagents for reliable inorganic–organic supramolecular synthesis. Dalton Transactions, 2005, , 2462.	3.3	13
107	A pyridyl-functionalized cavitand: Starting point for hydrogen-bond driven assembly of heterodimeric capsules. CrystEngComm, 2006, 8, 502-506.	2.6	13
108	Supramolecular Chemistry of Some Metal Acetylacetonates with Auxiliary Pyridyl Sites. Crystal Growth and Design, 2018, 18, 6936-6945.	3.0	12

#	Article	IF	CITATIONS
109	Traversing the Tightrope between Halogen and Chalcogen Bonds Using Structural Chemistry and Theory. Crystal Growth and Design, 2021, 21, 7168-7178.	3.0	12
110	Aromatic Dicarboxylic Acids as Building Blocks of Extended Hydrogen-bonded Architectures. Supramolecular Chemistry, 1998, 9, 127-135.	1.2	11
111	New building blocks for crystal engineering. Syntheses and crystal structures of oxime-substituted pyridines. CrystEngComm, 2000, 2, 145-150.	2.6	11
112	Exploring binding preferences in co-crystals of conformationally flexible multitopic ligands. CrystEngComm, 2017, 19, 4605-4614.	2.6	10
113	Exploring and predicting intermolecular binding preferences in crystalline Cu(<scp>ii</scp>) coordination complexes. Dalton Transactions, 2019, 48, 16222-16232.	3.3	10
114	Mapping out the Relative Influence of Hydrogen and Halogen Bonds in Crystal Structures of a Family of Amide-Substituted Pyridines. Crystal Growth and Design, 2020, 20, 7399-7410.	3.0	10
115	The Balance between Hydrogen Bonds, Halogen Bonds, and Chalcogen Bonds in the Crystal Structures of a Series of 1,3,4-Chalcogenadiazoles. Molecules, 2021, 26, 4125.	3.8	10
116	Syntheses and Crystal Structures of (N-Pyridylmethylene)Aminobenzamides: New Building Blocks for Binary and Ternary Co-Crystals. Molecular Crystals and Liquid Crystals, 2006, 456, 163-174.	0.9	9
117	Structure and thermodynamics of a multimeric cavitand assembly. CrystEngComm, 2014, 16, 3796-3801.	2.6	9
118	Enhancing chemical stability of tetranitro biimidazole-based energetic materials through co-crystallization. Canadian Journal of Chemistry, 2020, 98, 358-364.	1.1	9
119	Controlling Supramolecular Assembly Using Electronic Effects. Topics in Current Chemistry, 2011, 351, 125-147.	4.0	8
120	Structural Examination of Halogen-Bonded Co-Crystals of Tritopic Acceptors. Molecules, 2018, 23, 163.	3.8	7
121	From Frustrated Packing to Tecton-Driven Porous Molecular Solids. Chemistry, 2020, 2, 179-192.	2.2	7
122	Establishing Halogenâ€Bond Preferences in Molecules with Multiple Acceptor Sites. ChemPlusChem, 2021, 86, 1049-1057.	2.8	7
123	A new tecton with parallel halogen-bond donors: a path to supramolecular rectangles. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2017, 73, 163-167.	1.1	6
124	Molecular electrostatic potentials as a quantitative measure of hydrogen bonding preferences in solution. Supramolecular Chemistry, 2018, 30, 455-463.	1.2	6
125	Versatile Launch Pad for Facile Functionalization of Cavitands. European Journal of Organic Chemistry, 2011, 2011, 6789-6793.	2.4	5
126	α,α′,α′′-Tris(hydroxyimino)-1,3,5-benzenetriacetonitrile: A three-fold symmetric, versatile and practical supramolecular building block. CrystEngComm, 2012, 14, 71-74.	2.6	5

#	Article	IF	CITATIONS
127	Role of the "Weakest Link―in a Pressure-Driven Phase Transition of Two Polytypic Polymorphs. Crystal Growth and Design, 2016, 16, 2040-2051.	3.0	5
128	The halogen bond in solution: general discussion. Faraday Discussions, 2017, 203, 347-370.	3.2	5
129	Assessment of Computational Tools for Predicting Supramolecular Synthons. Chemistry, 2021, 3, 612-629.	2.2	5
130	Di-hydroxy malonic acid as a building block of hydrogen-bonded 3-dimensional architectures. Journal of Chemical Crystallography, 1998, 28, 111-117.	1.1	4
131	Two new polymorphs of 4-(N,N-dimethylamino)benzoic acid. Acta Crystallographica Section C: Crystal Structure Communications, 2005, 61, o702-o704.	0.4	4
132	Finding a single-molecule receptor for citramalic acid through supramolecular chelation. Canadian Journal of Chemistry, 2015, 93, 822-825.	1.1	4
133	A user-friendly application for predicting the outcome of co-crystallizations. CrystEngComm, 2020, 22, 6776-6779.	2.6	4
134	The Impact of Halogen Substituents on the Synthesis and Structure of Co-Crystals of Pyridine Amides. Molecules, 2021, 26, 1147.	3.8	4
135	"Triply Activated―Phenyl 3-lodopropiolates: Halogen-Bond Donors with Remarkable σ-Hole Potentials. Crystal Growth and Design, 2022, 22, 1538-1542.	3.0	4
136	Effective double-ended chelating agents: crystal structures of N,N,N′,N′-tetraacetyl diamino derivatives and their chelates. CrystEngComm, 2010, 12, 3218.	2.6	3
137	Using structural mimics for accessing and exploring structural landscapes of poorly soluble molecular solids. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2018, 74, 42-48.	1.1	3
138	From molecular electrostatic potential surfaces to practical avenues for directed assembly of organic and metal-containing crystalline materials. , 2021, , 231-279.		3
139	Ethylene-bridged asymmetric cavitands as building blocks for supramolecular polymers and capsules. CrystEngComm, 2016, 18, 7457-7462.	2.6	2
140	Beyond the halogen bond: general discussion. Faraday Discussions, 2017, 203, 227-244.	3.2	2
141	Solid-state chemistry and applications: general discussion. Faraday Discussions, 2017, 203, 459-483.	3.2	2
142	A Versatile Route to Porous Solids: Organic–Inorganic Hybrid Materials Assembled through Hydrogen Bonds. Angewandte Chemie - International Edition, 1999, 38, 1815-1819.	13.8	2
143	Assembly of Molecular Solids via Non-covalent Interactions. , 0, , 209-240.		2
144	2014 International year of crystallography celebration: North America. CrystEngComm, 2014, 16, 7160.	2.6	1

#	Article	IF	CITATIONS
145	Crystal Engineering of Energetic Materials: Co-crystals of Ethylenedinitramine (EDNA) with Modified Performance and Improved Chemical Stability. Chemistry - A European Journal, 2015, 21, 10921-10921.	3.3	1
146	Intermolecular binding preferences of haloethynyl halogen-bond donors as a function of molecular electrostatic potentials in a family of <i>N</i> -(pyridin-2-yl)amides. Organic and Biomolecular Chemistry, 2021, 19, 6671-6681.	2.8	1
147	A family of powerful halogen-bond donors: a structural and theoretical analysis of triply activated 3-iodo-1-phenylprop-2-yn-1-ones. CrystEngComm, 2022, 24, 738-742.	2.6	1
148	New talent: Americas. CrystEngComm, 2012, 14, 6109.	2.6	0
149	Influence of Multiple Binding Sites on the Supramolecular Assembly of N-[(3-pyridinylamino) Thioxomethyl] Carbamates. Molecules, 2022, 27, 3685.	3.8	0