Chung-Ho Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/667643/publications.pdf

Version: 2024-02-01

		304743	414414
62	1,304	22	32
papers	citations	h-index	g-index
63	63	63	1470
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Defining biological and biophysical properties of SARS-CoV-2 genetic material in wastewater. Science of the Total Environment, 2022, 807, 150786.	8.0	36
2	Activation of the plant mevalonate pathway by extracellular ATP. Nature Communications, 2022, 13, 450.	12.8	16
3	Detection of progesterone in aqueous samples by molecularly imprinted photonic polymers. Mikrochimica Acta, 2022, 189, 174.	5.0	9
4	Assessing Anti-Inflammatory Activities and Compounds in Switchgrass (Panicum virgatum). Agriculture (Switzerland), 2022, 12, 936.	3.1	2
5	Detection of Atrazine and its metabolites by photonic molecularly imprinted polymers in aqueous solutions. Chemical Engineering Journal Advances, 2022, 12, 100368.	5.2	8
6	Identification and quantification of bioactive compounds suppressing SARS-CoV-2 signals in wastewater-based epidemiology surveillance. Water Research, 2022, 221, 118824.	11.3	7
7	Assessing the efficiency of constructed wetlands in removing PPCPs from treated wastewater and mitigating the ecotoxicological impacts. International Journal of Hygiene and Environmental Health, 2021, 231, 113664.	4.3	28
8	Bioremediation and soils., 2021,, 237-273.		4
9	Evaluation of fatty acids, phenolics and bioactivities of spent coffee grounds prepared from Vietnamese coffee. International Journal of Food Properties, 2021, 24, 1548-1558.	3.0	15
10	Detection of chlorantraniliprole residues in tomato using field-deployable MIP photonic sensors. Mikrochimica Acta, 2021, 188, 70.	5.0	6
11	Health risk assessment of volatile organic compounds at daycare facilities. Indoor Air, 2021, 31, 977-988.	4.3	15
12	Establishment of Regional Phytoremediation Buffer Systems for Ecological Restoration in the Great Lakes Basin, USA. I. Genotype × Environment Interactions. Forests, 2021, 12, 430.	2.1	7
13	Establishment of Regional Phytoremediation Buffer Systems for Ecological Restoration in the Great Lakes Basin, USA. II. New Clones Show Exceptional Promise. Forests, 2021, 12, 474.	2.1	8
14	A systematic approach for prioritizing landfill pollutants based on toxicity: Applications and opportunities. Journal of Environmental Management, 2021, 284, 112031.	7.8	13
15	Identification of health-promoting bioactive phenolics in black walnut using cloud-based metabolomics platform. Journal of Food Measurement and Characterization, 2020, 14, 770-777.	3.2	8
16	Profiling Anticancer and Antioxidant Activities of Phenolic Compounds Present in Black Walnuts (Juglans nigra) Using a High-Throughput Screening Approach. Molecules, 2020, 25, 4516.	3.8	12
17	Adsorption of atrazine by laser induced graphitic material: An efficient, scalable and green alternative for pollution abatement. Journal of Environmental Chemical Engineering, 2020, 8, 104407.	6.7	20
18	Endocrine disrupting activities and geochemistry of water resources associated with unconventional oil and gas activity. Science of the Total Environment, 2020, 748, 142236.	8.0	13

#	Article	IF	CITATIONS
19	A <i>Bacillus</i> Spore-Based Display System for Bioremediation of Atrazine. Applied and Environmental Microbiology, 2020, 86, .	3.1	11
20	Identification and Quantification of Bioactive Molecules Inhibiting Pro-inflammatory Cytokine Production in Spent Coffee Grounds Using Metabolomics Analyses. Frontiers in Pharmacology, 2020, 11, 229.	3.5	16
21	Assessment of indoor volatile organic compounds in Head Start child care facilities. Atmospheric Environment, 2019, 215, 116900.	4.1	12
22	Black Walnut (Juglans nigra) Extracts Inhibit Proinflammatory Cytokine Production From Lipopolysaccharide-Stimulated Human Promonocytic Cell Line U-937. Frontiers in Pharmacology, 2019, 10, 1059.	3.5	12
23	Influence of agroforestry plant species on the infiltration of S-Metolachlor in buffer soils. Journal of Contaminant Hydrology, 2019, 225, 103498.	3.3	13
24	Exposure to environmental toxicants and young children's cognitive and social development. Reviews on Environmental Health, 2019, 34, 35-56.	2.4	16
25	Heritable Phytohormone Profiles of Poplar Genotypes Vary in Resistance to a Galling Aphid. Molecular Plant-Microbe Interactions, 2019, 32, 654-672.	2.6	14
26	Identification and quantification of phytosterols in black walnut kernels. Journal of Food Composition and Analysis, 2019, 75, 61-69.	3.9	31
27	Responses of legumes and grasses to non-, moderate, and dense shade in Missouri, USA. I. Forage yield and its species-level plasticity. Agroforestry Systems, 2019, 93, 11-24.	2.0	58
28	Responses of legumes and grasses to non-, moderate, and dense shade in Missouri, USA. II. Forage quality and its species-level plasticity. Agroforestry Systems, 2019, 93, 25-38.	2.0	32
29	Identification and Characterization of Phenolic Compounds in Black Walnut Kernels. Journal of Agricultural and Food Chemistry, 2018, 66, 4503-4511.	5.2	77
30	Endocrine-Disrupting Activities and Organic Contaminants Associated with Oil and Gas Operations in Wyoming Groundwater. Archives of Environmental Contamination and Toxicology, 2018, 75, 247-258.	4.1	21
31	Determination of volatile organic compounds in child care centers by thermal desorption gas chromatography-mass spectrometry. Analytical Methods, 2018, 10, 730-742.	2.7	11
32	Identifying Antibacterial Compounds in Black Walnuts (Juglans nigra) Using a Metabolomics Approach. Metabolites, 2018, 8, 58.	2.9	29
33	Abatement of 2,4-D by H2O2 solar photolysis and solar photo-Fenton-like process with minute Fe(III) concentrations. Water Research, 2018, 144, 572-580.	11.3	39
34	Photonic Molecularly Imprinted Polymer Film for the Detection of Testosterone in Aqueous Samples. Polymers, 2018, 10, 349.	4.5	26
35	Synthesis and plant growth inhibitory activity of <i>N-trans</i> -cinnamoyltyramine: its possible inhibition mechanisms and biosynthesis pathway. Journal of Plant Interactions, 2017, 12, 51-57.	2.1	6
36	Occurrence of enrofloxacin in overflows from animal lot and residential sewage lagoons and a receiving-stream. Heliyon, 2017, 3, e00409.	3.2	10

#	Article	IF	Citations
37	Endocrine-Disrupting Chemicals and Oil and Natural Gas Operations: Potential Environmental Contamination and Recommendations to Assess Complex Environmental Mixtures. Environmental Health Perspectives, 2016, 124, 256-264.	6.0	68
38	Veterinary Antibiotic Effects on Atrazine Degradation and Soil Microorganisms. Journal of Environmental Quality, 2016, 45, 565-575.	2.0	13
39	Effects of probiotics on soil microbial activity, biomass and enzymatic activity under cover crops in field and greenhouse studies. Agroforestry Systems, 2016, 90, 811-827.	2.0	10
40	Emission of Carbon Dioxide and Methane from Duckweed Ponds for Stormwater Treatment. Water Environment Research, 2015, 87, 805-812.	2.7	5
41	Endocrine-Disrupting Activity of Hydraulic Fracturing Chemicals and Adverse Health Outcomes After Prenatal Exposure in Male Mice. Endocrinology, 2015, 156, 4458-4473.	2.8	82
42	A Simple Method for Isolation and Purification of DIBOA-Glc from <i>Tripsacum dactyloides</i> Natural Product Communications, 2014, 9, 1934578X1400900.	0.5	0
43	Isolation and purification of growthâ€inhibitors from <scp>V</scp> ietnamese rice cultivars. Weed Biology and Management, 2014, 14, 221-231.	1.4	6
44	Isolation and identification of an allelopathic phenylethylamine in rice. Phytochemistry, 2014, 108, 109-121.	2.9	31
45	Allelopathic Exudates of Cogongrass (Imperata cylindrica): Implications for the Performance of Native Pine Savanna Plant Species in the Southeastern US. Journal of Chemical Ecology, 2013, 39, 312-322.	1.8	35
46	Identification of an Atrazine-Degrading Benzoxazinoid in Eastern Gamagrass (Tripsacum dactyloides). Journal of Agricultural and Food Chemistry, 2013, 61, 8026-8033.	5.2	8
47	Sulfamethazine Sorption to Soil: Vegetative Management, pH, and Dissolved Organic Matter Effects. Journal of Environmental Quality, 2013, 42, 794-805.	2.0	38
48	Sulfamethazine Transport in Agroforestry and Cropland Soils. Vadose Zone Journal, 2013, 12, 1-14.	2.2	7
49	Electroantennographic Responses of the Small Chestnut WeevilCurculio sayi(Coleoptera:) Tj ETQq1 1 0.784314 Environmental Entomology, 2012, 41, 933-940.	rgBT /Ove 1.4	rlock 10 Tf 5 7
50	Introduction of Atrazine Degrader To Enhance Rhizodegradation of Atrazine. ACS Symposium Series, 2011, , 139-154.	0.5	0
51	Adsorption of Isoxaflutole Degradates to Aluminum and Iron Hydrous Oxides. Journal of Environmental Quality, 2011, 40, 528-537.	2.0	4
52	Stimulated Rhizodegradation of Atrazine by Selected Plant Species. Journal of Environmental Quality, 2011, 40, 1113-1121.	2.0	30
53	Reducing Herbicides and Veterinary Antibiotics Losses from Agroecosystems Using Vegetative Buffers. Journal of Environmental Quality, 2011, 40, 791-799.	2.0	57
54	Veterinary antibiotic sorption to agroforestry buffer, grass buffer and cropland soils. Agroforestry Systems, 2010, 79, 67-80.	2.0	37

#	Article	IF	CITATION
55	Evaluation of PCRâ€based Quantification Techniques to Estimate the Abundance of Atrazine Chlorohydrolase Gene atzA in Rhizosphere Soils. Journal of Environmental Quality, 2010, 39, 1999-2005.	2.0	4
56	Dissipation of Sulfamethazine and Tetracycline in the Root Zone of Grass and Tree Species. Journal of Environmental Quality, 2010, 39, 1269-1278.	2.0	28
57	Bioremediation of Atrazineâ€Contaminated Soil by Forage Grasses: Transformation, Uptake, and Detoxification. Journal of Environmental Quality, 2008, 37, 196-206.	2.0	69
58	Improved GCâ€MS/MS Method for Determination of Atrazine and Its Chlorinated Metabolites in Forage Plantsâ€"Laboratory and Field Experiments. Communications in Soil Science and Plant Analysis, 2007, 38, 1753-1773.	1.4	19
59	Ability of Forage Grasses Exposed to Atrazine and Isoxaflutole to Reduce Nutrient Levels in Soils and Shallow Groundwater. Communications in Soil Science and Plant Analysis, 2007, 38, 1119-1136.	1.4	10
60	Degradation of Isoxaflutole (Balance) Herbicide by Hypochlorite in Tap Water. Journal of Agricultural and Food Chemistry, 2003, 51, 8011-8014.	5.2	23
61	The Effect of Five Forage Species on Transport and Transformation of Atrazine and Isoxaflutole (Balance) in Lysimeter Leachate. Journal of Environmental Quality, 2003, 32, 1992-2000.	2.0	24
62	Determination of Isoxaflutole (Balance) and Its Metabolites in Water Using Solid Phase Extraction Followed by High-Performance Liquid Chromatography with Ultraviolet or Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2002, 50, 5816-5824.	5.2	27