
Liang Yan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6676341/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Superior performance of nano-Au supported over Co3O4 catalyst in direct N2O decomposition. Chemical Communications, 2002, , 860-861.	4.1	80
2	Mesoporous silica-supported copper-catalysts for homocoupling reaction of terminal alkynes at room-temperature. New Journal of Chemistry, 2013, 37, 1343.	2.8	37
3	Hydroxylation of phenol catalyzed by copper Keggin-type heteropoly compounds with hydrogen peroxide. New Journal of Chemistry, 2002, 26, 376-377.	2.8	34
4	Insight into the structure and molybdenum species in mesoporous molybdena–alumina catalysts for isobutane dehydrogenation. Catalysis Science and Technology, 2017, 7, 3258-3267.	4.1	29
5	Sulfamic Acid as a Costâ€Effective and Recyclable Catalyst for Protection of Carbonyls to Acetals and Ketals Under Mild Conditions. Synthetic Communications, 2004, 34, 4243-4247.	2.1	15
6	One-Pot Synthesis of Ordered Mesoporous NiSiAl Oxides for Catalyzing CO2Reforming of CH4. European Journal of Inorganic Chemistry, 2016, 2016, 3396-3404.	2.0	15
7	Some New Features on Synthesis of Titanium Silicalite-1 in a Non-TPAOH Inorganic Reactant Synthetic System. Journal of Porous Materials, 2005, 12, 131-141.	2.6	14
8	The Reactivity and Deactivation Mechanism of Ru@C Catalyst over Hydrogenation of Aromatics to Cyclohexane Derivatives. ChemistrySelect, 2020, 5, 4316-4327.	1.5	14
9	Effect of Calcination Temperature on the Characteristics and Performance of Solid Acid WO ₃ /TiO ₂ â€5upported Lithiumâ€Manganese Catalysts for the Oxidative Coupling of Methane. European Journal of Inorganic Chemistry, 2019, 2019, 1236-1242.	2.0	13
10	Pyridine-keggin heteropoly compounds as catalyst for hydroxylation of phenol using hydrogen peroxide as oxidant. Reaction Kinetics and Catalysis Letters, 2007, 91, 111-118.	0.6	11
11	Morphological effect of lanthanum-based supports on the catalytic performance of Pt catalysts in crotonaldehyde hydrogenation. Journal of Nanoparticle Research, 2016, 18, 1.	1.9	10
12	Impact of chloride ions on the oxidative coupling of methane over Li/SnO2 catalyst. Reaction Kinetics, Mechanisms and Catalysis, 2018, 125, 675-688.	1.7	10
13	Synthesis and Catalytic Performance of a Dual-Sites Fe–Zn Catalyst Based on Ordered Mesoporous Al2O3 for Isobutane Dehydrogenation. Catalysis Letters, 2019, 149, 1326-1336.	2.6	9
14	Fe-containing N-doped porous carbon for isobutane dehydrogenation. Microporous and Mesoporous Materials, 2020, 293, 109820.	4.4	9
15	Insight into the structure evolution and the associated catalytic behavior of highly dispersed Pt and PtSn catalysts supported on La2O2CO3 nanorods. RSC Advances, 2017, 7, 48649-48661.	3.6	8
16	Facile synthesis of ordered mesoporous zinc alumina catalysts and their dehydrogenation behavior. RSC Advances, 2019, 9, 9828-9837.	3.6	8
17	The structure and electronic effects of ZIF-8 and ZIF-67 supported Pt catalysts for crotonaldehyde selective hydrogenation. New Journal of Chemistry, 0, , .	2.8	7
18	Fabrication of hierarchically porous MgFe2O4/N-doped carbon composites for oxidative dehydrogenation of isobutane. Applied Surface Science, 2020, 531, 147219.	6.1	6

LIANG YAN

#	Article	IF	CITATIONS
19	The chemoselective hydrogenation of crotonaldehyde over PtFe catalysts supported on La2O2CO3 nanorods. Reaction Kinetics, Mechanisms and Catalysis, 2017, 122, 117-133.	1.7	4
20	Efficient T-butylation of Phenol using the Wells–Dawson-type Molybdovanadophosphoric Heteropolyacid, H ₇ P ₂ Mo ₁₇ VO ₆₂ , as Catalyst. Journal of Chemical Research, 2005, 2005, 173-176.	1.3	3
21	Preparation and Study of Multi-Heteroatom Carbon Nanotube as Excellent Electrocatalyst for Oxygen Reduction Reaction Using Polydopamine Derivative. Advances in Materials Science and Engineering, 2018, 2018, 1-6.	1.8	2
22	Promoting Effect of KITâ€6 to Support Ni e _{0.8} Gd _{0.2} O _{2â€} _{δas Efficient Cokeâ€Resistant Catalysts for Carbon Dioxide Reforming of Methane. European Journal of Inorganic Chemistry, 2020, 2020, 631-637.}	> 2.0	2
23	Dual Interface Synergistic Catalysis: The Selective Hydrogenation of Crotonaldehyde Over Pt/Co3O4@PDA. Catalysis Letters, 0, , .	2.6	0