Ding Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/667630/publications.pdf Version: 2024-02-01

ΠΙΝΟ ΖΗΟΙΙ

#	Article	IF	CITATIONS
1	Toward Efficient Orange Emissive Carbon Nanodots through Conjugated sp ² â€Domain Controlling and Surface Charges Engineering. Advanced Materials, 2016, 28, 3516-3521.	21.0	583
2	Fullâ€Color Inorganic Carbon Dot Phosphors for Whiteâ€Lightâ€Emitting Diodes. Advanced Optical Materials, 2017, 5, 1700416.	7.3	360
3	Conquering Aggregation-Induced Solid-State Luminescence Quenching of Carbon Dots through a Carbon Dots-Triggered Silica Gelation Process. Chemistry of Materials, 2017, 29, 1779-1787.	6.7	242
4	Supra-(carbon nanodots) with a strong visible to near-infrared absorption band and efficient photothermal conversion. Light: Science and Applications, 2016, 5, e16120-e16120.	16.6	237
5	Electrostatic Assembly Guided Synthesis of Highly Luminescent Carbonâ€Nanodots@BaSO ₄ Hybrid Phosphors with Improved Stability. Small, 2017, 13, 1602055.	10.0	118
6	Carbon dots produced <i>via</i> space-confined vacuum heating: maintaining efficient luminescence in both dispersed and aggregated states. Nanoscale Horizons, 2019, 4, 388-395.	8.0	82
7	Highly Emissive Carbon Dots in Solid State and Their Applications in Light-Emitting Devices and Visible Light Communication. ACS Sustainable Chemistry and Engineering, 2019, 7, 9301-9308.	6.7	81
8	Ultraviolet-pumped white light emissive carbon dot based phosphors for light-emitting devices and visible light communication. Nanoscale, 2019, 11, 3489-3494.	5.6	61
9	In Vivo Tumor Photoacoustic Imaging and Photothermal Therapy Based on Supraâ€(Carbon Nanodots). Advanced Healthcare Materials, 2019, 8, e1800995.	7.6	61
10	Red carbon dots-based phosphors for white light-emitting diodes with color rendering index of 92. Journal of Colloid and Interface Science, 2018, 528, 281-288.	9.4	54
11	Synthesis of green emissive carbon dots@montmorillonite composites and their application for fabrication of light-emitting diodes and latent fingerprints markers. Journal of Colloid and Interface Science, 2019, 554, 344-352.	9.4	53
12	Cell-based fluorescent microsphere incorporated with carbon dots as a sensitive immunosensor for the rapid detection of Escherichia coli O157 in milk. Biosensors and Bioelectronics, 2021, 179, 113057.	10.1	52
13	Modulating the optical and electrical properties of MAPbBr3 single crystals via voltage regulation engineering and application in memristors. Light: Science and Applications, 2020, 9, 111.	16.6	51
14	Preparation and application of carbon-nanodot@NaCl composite phosphors with strong green emission. Journal of Colloid and Interface Science, 2017, 497, 165-171.	9.4	47
15	A co-crystallization induced surface modification strategy with cyanuric acid modulates the bandgap emission of carbon dots. Nanoscale, 2020, 12, 10987-10993.	5.6	46
16	Carbon-Dots-Derived 3D Highly Nitrogen-Doped Porous Carbon Framework for High-Performance Lithium Ion Storage. ACS Sustainable Chemistry and Engineering, 2019, 7, 9848-9856.	6.7	42
17	Ascorbic Acid-PEI Carbon Dots with Osteogenic Effects as miR-2861 Carriers to Effectively Enhance Bone Regeneration. ACS Applied Materials & Interfaces, 2020, 12, 50287-50302.	8.0	40
18	Origin of Anisotropic Photoluminescence in Heteroatomâ€Doped Carbon Nanodots. Advanced Optical Materials, 2017, 5, 1601049.	7.3	34

DING ZHOU

#	Article	IF	CITATIONS
19	Microwave-assisted <i>in situ</i> large scale synthesis of a carbon dots@g-C ₃ N ₄ composite phosphor for white light-emitting devices. Materials Chemistry Frontiers, 2020, 4, 517-523.	5.9	34
20	Synthesis of carbon dots with strong luminescence in both dispersed and aggregated states by tailoring sulfur doping. Journal of Colloid and Interface Science, 2022, 609, 54-64.	9.4	24
21	Microwave-Assisted Heating Method toward Multicolor Quantum Dot-Based Phosphors with Much Improved Luminescence. ACS Applied Materials & Interfaces, 2018, 10, 27160-27170.	8.0	21
22	Carbon Dots Induce Epithelialâ€Mesenchymal Transition for Promoting Cutaneous Wound Healing via Activation of TGFâ€Î²/p38/Snail Pathway. Advanced Functional Materials, 2020, 30, 2004886.	14.9	19
23	Bone formation promoted by bone morphogenetic protein-2 plasmid-loaded porous silica nanoparticles with the involvement of autophagy. Nanoscale, 2019, 11, 21953-21963.	5.6	15
24	Dramatically Enhanced Photoluminescence from Femtosecond Laser Induced Microâ€/Nanostructures on MAPbBr ₃ Single Crystal Surface. Advanced Optical Materials, 2018, 6, 1800411.	7.3	14
25	Dual-encryption based on facilely synthesized supra-(carbon nanodots) with water-induced enhanced luminescence. RSC Advances, 2016, 6, 79620-79624.	3.6	11
26	Preparation of quantum dots-montmorillonite nanocomposites with strong photoluminescence for light-emitting diodes. RSC Advances, 2017, 7, 7774-7779.	3.6	3