
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6676085/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reactions of Sulfonylphthalide with Diverse Activated Imines for the Synthesis of Enaminophthalides, <i>Spiro</i> -isoquinolinones, and Homalicine Natural Products. Journal of Organic Chemistry, 2023, 88, 4038-4051.	3.2	3
2	Oneâ€Pot Regio―and Diastereoselective Synthesis of Tetrahydroâ€Î±â€€arbolines via Cascade Reactions of Iminoindolines with Moritaâ€Baylisâ€Hillman Bromides of Nitroalkenes. European Journal of Organic Chemistry, 2022, 2022, .	2.4	8
3	Regio- and stereoselective synthesis of functionalized and fused heterocycles from Morita–Baylis–Hillman adducts of dicyclopentadienone. Organic and Biomolecular Chemistry, 2022, 20, 2271-2281.	2.8	1
4	Synthesis and energetic properties of homocubane based high energy density materials. Organic Chemistry Frontiers, 2021, 8, 531-548.	4.5	10
5	Synthesis of β-triazolylenones via metal-free desulfonylative alkylation of <i>N</i> -tosyl-1,2,3-triazoles. Beilstein Journal of Organic Chemistry, 2021, 17, 762-770.	2.2	2
6	Synthesis of Sulfonyloxindoles via Functional Group Exchange Between 3‣ulfonylphthalide and Isatylidenemalononitrile. Asian Journal of Organic Chemistry, 2021, 10, 1102-1112.	2.7	7
7	Metal-Free and Regioselective Synthesis of Functionalized α-Carbolines via [3 + 3] Annulation of Morita–Baylis–Hillman Acetates of Nitroalkenes with Iminoindolines. Journal of Organic Chemistry, 2021, 86, 8465-8471.	3.2	19
8	Regio- and Stereoselective Synthesis of Dispiro-bisoxindoles via [3+2] Annulation Involving Nitroisatylidene as a Vinylogous Michael Donor. Organic Letters, 2021, 23, 4618-4623.	4.6	10
9	Michael Additionâ€Elimination and [4+1] Annulation of Sulfonylphthalide with Hydroxychalcones for the Synthesis of Alkylidenephthalides and Indanediones. European Journal of Organic Chemistry, 2021, 2021, 3472-3477.	2.4	5
10	Stereoselective Synthesis of Tri- and Tetrasubstituted Olefins via 1,6-Additions of Diazo Compounds and Their Precursors to <i>p</i> -Quinone Methides. ACS Organic & Inorganic Au, 2021, 1, 51-59.	4.0	6
11	Combustion characteristics of novel bishomocubane propellants in oxygen-enriched environments. Fuel, 2021, 305, 121508.	6.4	3
12	Stereoselective synthesis of hydrazinodihydrofurans <i>via</i> cascade Michael addition–substitution involving the reaction of curcumin and other β-dicarbonyls with α-hydrazinonitroalkenes. Organic and Biomolecular Chemistry, 2020, 18, 140-153.	2.8	12
13	Synthesis of tetrahydrothiopyrano[2,3- <i>b</i>]indoles <i>via</i> [3+3] annulation of nitroallylic acetates with indoline-2-thiones. New Journal of Chemistry, 2020, 44, 1389-1399.	2.8	17
14	Pentacycloundecane (PCUD)â€Based Cage Frameworks as Potential Energetic Materials: Syntheses and Characterization. Asian Journal of Organic Chemistry, 2020, 9, 2116-2126.	2.7	11
15	Droplet combustion studies on novel cage hydrocarbons using color-ratio pyrometry. Fuel, 2020, 282, 118816.	6.4	9
16	A Morita–Baylis–Hillman Pathway to Wittig Products: Oneâ€Pot Transformation of Nitroalkylideneoxindoles to Oxindolylideneâ€Carboxylates. European Journal of Organic Chemistry, 2020, 2020, 6903-6908.	2.4	9
17	Synthesis of Functionalized Arenopyrans and Arenylsulfanes via Reaction of Nitroallylic Acetates with Arenols and Arenethiols. European Journal of Organic Chemistry, 2020, 2020, 5469-5470.	2.4	1
18	Strategies towards potent trypanocidal drugs: Application of Rh-catalyzed [2 + 2 + 2] cycloadditions, sulfonyl phthalide annulation and nitroalkene reactions for the synthesis of substituted quinones and their evaluation against Trypanosoma cruzi. Bioorganic and Medicinal Chemistry, 2020, 28, 115565.	3.0	13

#	Article	IF	CITATIONS
19	Synthesis of Densely Substituted Sulfonylfurans and Dihydrofurans via Cascade Reactions of α-Functionalized Nitroalkenes with β-Ketosulfones. Journal of Organic Chemistry, 2020, 85, 8825-8843.	3.2	20
20	Synthesis of indenofurans, benzofurans and spiro-lactones <i>via</i> Hauser–Kraus annulation involving 1,6-addition of phthalide to quinone methides. Organic and Biomolecular Chemistry, 2020, 18, 5677-5687.	2.8	19
21	Substrate-oriented selectivity in the Mg-mediated conjugate addition of bromoform to electron-deficient alkenes. Organic and Biomolecular Chemistry, 2020, 18, 5697-5707.	2.8	3
22	Droplet combustion studies on two novel energetic propellants, an RP-1 surrogate fuel, and their blends. Fuel, 2019, 255, 115836.	6.4	17
23	Base and catalyst-free synthesis of nitrobenzodiazepines via a cascade N-nitroallylation-intramolecular aza-Michael addition involving o-phenylenediamines and nitroallylic acetates. Tetrahedron, 2019, 75, 130761.	1.9	12
24	Role of amphiphilic [metal:chelator] complexes in a non-chromatographic antibody purification platform. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2019, 1133, 121830.	2.3	7
25	Controlled micelle conjugation via charged peptide amphiphiles. Journal of Peptide Science, 2019, 25, e3174.	1.4	2
26	Synthesis of Spiro- and Fused Heterocycles via (4+4) Annulation of Sulfonylphthalide with <i>o</i> -Hydroxystyrenyl Derivatives. Journal of Organic Chemistry, 2019, 84, 3158-3168.	3.2	17
27	A general platform for antibody purification utilizing engineered-micelles. MAbs, 2019, 11, 583-592.	5.2	8
28	1,3-Dipolar cycloaddition of chalcones and arylidene-1,3-dicarbonyls with diazosulfone for the regioselective synthesis of functionalized pyrazoles and pyrazolines. Tetrahedron, 2018, 74, 2716-2724.	1.9	22
29	Quinonoid compounds via reactions of lawsone and 2-aminonaphthoquinone with α-bromonitroalkenes and nitroallylic acetates: Structural diversity by C-ring modification and cytotoxic evaluation against cancer cells. European Journal of Medicinal Chemistry, 2018, 151, 686-704.	5.5	40
30	Synthesis of Functionalized Thieno[2,3- <i>b</i>]indoles via One-Pot Reaction of Indoline-2-thiones with Morita–Baylis–Hillman and Rauhut–Currier Adducts of Nitroalkenes. ACS Omega, 2018, 3, 17617-17628.	3.5	12
31	Synthesis of Functionalized Arenopyrans and Arenylsulfanes by Reacting Nitroallylic Acetates with Arenols and Arenethiols. European Journal of Organic Chemistry, 2018, 2018, 5735-5743.	2.4	15
32	(3 + 3) Annulation of Nitroallylic Acetates with Stabilized Sulfur Ylides for the Synthesis of 2-Aryl Terephthalates. Journal of Organic Chemistry, 2018, 83, 9471-9477.	3.2	26
33	Synthesis of annulated oxa-triquinanes and oxa-diquinanes via cascade Michael addition-intramolecular alkylation involving α-halodicyclopentadienones. Tetrahedron, 2017, 73, 1297-1305.	1.9	8
34	Synthesis of Functionalized Pyrazoles <i>via</i> 1,3â€Dipolar Cycloaddition of <i>α</i> â€Diazo <i>â€Î²</i> â€ketophosphonates, Sufones and Esters with Electronâ€Deficient Alkenes. Chemical Record, 2017, 17, 939-955.	5.8	41
35	Regio- and Diastereoselective Synthesis of Dihydropyridopyrimidines via Cascade Reactions of 2-Aminopyridines with Morita–Baylis–Hillman Bromides of Nitroalkenes. Journal of Organic Chemistry, 2017, 82, 6482-6488.	3.2	12
36	Synthesis of Quinoneâ€Based <i>N</i> â€Sulfonylâ€1,2,3â€triazoles: Chemical Reactivity of Rh(II) Azavinyl Carbenes and Antitumor Activity. ChemistrySelect, 2017, 2, 4301-4308.	1.5	23

#	Article	IF	CITATIONS
37	Synthesis of fused cyanopyrroles and spirocyclopropanes via addition of N-ylides to chalconimines. Organic and Biomolecular Chemistry, 2017, 15, 3616-3627.	2.8	18
38	Synthesis of Aminophenanthrenes and Benzoquinolines via Hauser–Kraus Annulation of Sulfonyl Phthalide with Rauhut–Currier Adducts of Nitroalkenes. Organic Letters, 2017, 19, 4283-4286.	4.6	23
39	One-Pot Construction of Functionalized Spiro-dihydronaphthoquinone-oxindoles via Hauser–Kraus Annulation of Sulfonylphthalide with 3-Alkylideneoxindoles. Journal of Organic Chemistry, 2017, 82, 12939-12944.	3.2	18
40	Theoretical studies on the propulsive and explosive performance of strained polycyclic cage compounds. New Journal of Chemistry, 2017, 41, 920-930.	2.8	26
41	Direct and Co atalytic Oxidation of Hydroxylamines to Nitrones Promoted by Rhodium Nanoparticles Supported on Carbon Nanotubes. ChemCatChem, 2017, 9, 2091-2094.	3.7	11
42	Selective Conversion of Nitroarenes to Nâ€Aryl Hydroxylamines Catalysed by Carbonâ€Nanotubeâ€Supported Nickel(II) Hydroxide. ChemistrySelect, 2017, 2, 5891-5894.	1.5	15
43	Supramolecular Assembly of Gold Nanoparticles on Carbon Nanotubes: Application to the Catalytic Oxidation of Hydroxylamines. Nanomaterials, 2016, 6, 37.	4.1	9
44	Hauser–Kraus Annulation of Phthalides with Nitroalkenes for the Synthesis of Fused and Spiro Heterocycles. European Journal of Organic Chemistry, 2016, 2016, 3316-3321.	2.4	30
45	Membrane protein crystallization in micelles conjugated by nucleoside base-pairing: A different concept. Journal of Structural Biology, 2016, 195, 379-386.	2.8	5
46	Recent developments in Tsuji-Wacker oxidation. Tetrahedron Letters, 2016, 57, 3993-4000.	1.4	60
47	α-Functionalization of Nitroalkenes and Its Applications in Organic Synthesis. Synlett, 2016, 27, 2425-2442.	1.8	45
48	Direct and co-catalytic oxidative aromatization of 1,4-dihydropyridines and related substrates using gold nanoparticles supported on carbon nanotubes. Catalysis Science and Technology, 2016, 6, 6476-6479.	4.1	16
49	Effect of curcumin analogs onα-synuclein aggregation and cytotoxicity. Scientific Reports, 2016, 6, 28511.	3.3	56
50	Carbon Nanotube–Ruthenium Hybrids for the Partial Reduction of 2â€Nitrochalcones: Easy Access to Quinoline <i>N</i> â€Oxides. ChemCatChem, 2016, 8, 1298-1302.	3.7	20
51	Catalytic asymmetric reactions and synthesis of quinones. Organic and Biomolecular Chemistry, 2016, 14, 6913-6931.	2.8	68
52	Regioselective synthesis of pyrazole and pyridazine esters from chalcones and α-diazo-β-ketoesters. Tetrahedron Letters, 2016, 57, 3146-3149.	1.4	27
53	Synthesis and antitumor activity of selenium-containing quinone-based triazoles possessing two redox centres, and theirÂmechanistic insights. European Journal of Medicinal Chemistry, 2016, 122, 1-16.	5.5	65
54	Enantioselective Synthesis of Quaternary α-Amino Acids via <scp>l</scp> - <i>tert</i> -Leucine-Derived Squaramide-Catalyzed Conjugate Addition of α-Nitrocarboxylates to Enones. Journal of Organic Chemistry, 2016, 81, 5670-5680.	3.2	12

#	Article	lF	CITATIONS
55	Synthesis of hydrazinoheterocycles from Morita–Baylis–Hillman adducts of nitroalkenes with azodicarboxylates. Organic and Biomolecular Chemistry, 2016, 14, 2427-2438.	2.8	24
56	Supramolecular Assembly of Gold Nanoparticles on Carbon Nanotubes and Catalysis of Selected Organic Transformations. Synlett, 2016, 27, 1179-1186.	1.8	20
57	Cooperative Dehydrogenation of Nâ€Heterocycles Using a Carbon Nanotube–Rhodium Nanohybrid. Chemistry - A European Journal, 2015, 21, 7039-7042.	3.3	89
58	Polydiacetylene Nanotubes in Heterogeneous Catalysis: Application to the Goldâ€Mediated Oxidation of Silanes. Macromolecular Chemistry and Physics, 2015, 216, 2398-2403.	2.2	15
59	Tsuji–Wacker Oxidation of Terminal Olefins using a Palladium–Carbon Nanotube Nanohybrid. ChemCatChem, 2015, 7, 2318-2322.	3.7	35
60	Deoxygenation of amine N-oxides using gold nanoparticles supported on carbon nanotubes. RSC Advances, 2015, 5, 50865-50868.	3.6	29
61	Synthesis of imidazoles via cascade reaction of nitroallylic acetates with amidines and studies on their trypanocidal activity. Organic and Biomolecular Chemistry, 2015, 13, 1996-2000.	2.8	35
62	Room temperature Suzuki coupling of aryl iodides, bromides, and chlorides using a heterogeneous carbon nanotube-palladium nanohybrid catalyst. Catalysis Science and Technology, 2015, 5, 2388-2392.	4.1	62
63	Quinine-Derived Thiourea and Squaramide Catalyzed Conjugate Addition of α-Nitrophosphonates to Enones: Asymmetric Synthesis of Quaternary α-Aminophosphonates. Journal of Organic Chemistry, 2015, 80, 1402-1413.	3.2	35
64	One-pot regioselective synthesis of functionalized and fused furans from Morita–Baylis–Hillman and Rauhut–Currier adducts of nitroalkenes. RSC Advances, 2015, 5, 69990-69999.	3.6	24
65	Mild and selective catalytic oxidation of organic substrates by a carbon nanotube-rhodium nanohybrid. Catalysis Science and Technology, 2015, 5, 4542-4546.	4.1	29
66	Naphthoquinone-based chalcone hybrids and derivatives: synthesis and potent activity against cancer cell lines. MedChemComm, 2015, 6, 120-130.	3.4	42
67	A multi-walled carbon nanotube/poly-2,6-dichlorophenolindophenol film modified carbon paste electrode for the amperometric determination of <scp>l</scp> -tyrosine. RSC Advances, 2015, 5, 91472-91481.	3.6	33
68	Imidazoles from nitroallylic acetates and $\hat{I}\pm$ -bromonitroalkenes with amidines: synthesis and trypanocidal activity studies. Organic and Biomolecular Chemistry, 2015, 13, 9862-9871.	2.8	43
69	Synthesis and energetic properties of high-nitrogen substituted bishomocubanes. Journal of Materials Chemistry A, 2015, 3, 22118-22128.	10.3	29
70	Selective conversion of nitroarenes using a carbon nanotube–ruthenium nanohybrid. Chemical Communications, 2015, 51, 1739-1742.	4.1	61
71	Synthesis of Quinoxalines by a Carbon Nanotube–Gold Nanohybrid atalyzed Cascade Reaction of Vicinal Diols and Keto Alcohols with Diamines. ChemCatChem, 2015, 7, 57-61.	3.7	32
72	Engineered-membranes and engineered-micelles as efficient tools for purification of halorhodopsin and bacteriorhodopsin. Analyst, The, 2015, 140, 204-212.	3.5	9

#	Article	IF	CITATIONS
73	Carbon Nanotube–Gold Nanohybrid Catalyzed Nâ€Formylation of Amines by using Aqueous Formaldehyde. ChemCatChem, 2014, 6, 2201-2205.	3.7	48
74	Asymmetric Synthesis of Quaternary αâ€Amino Acids and Their Phosphonate Analogues. Asian Journal of Organic Chemistry, 2014, 3, 1234-1260.	2.7	111
75	Reactions of vinyl sulfone with α-diazo-β-ketosulfone and Bestmann–Ohira reagent for the regioselective synthesis of highly functionalized pyrazoles. Tetrahedron, 2014, 70, 1794-1799.	1.9	34
76	Aerobic Oxidation of Phenols and Related Compounds using Carbon Nanotube–Gold Nanohybrid Catalysts. ChemCatChem, 2014, 6, 719-723.	3.7	43
77	Chiral squaramide-catalyzed asymmetric synthesis of pyranones and pyranonaphthoquinones via cascade reactions of 1,3-dicarbonyls with Morita–Baylis–Hillman acetates of nitroalkenes. Chemical Communications, 2014, 50, 6973-6976.	4.1	76
78	Co-catalytic oxidative coupling of primary amines to imines using an organic nanotube–gold nanohybrid. Chemical Communications, 2014, 50, 15251-15254.	4.1	47
79	Part II: nitroalkenes in the synthesis of heterocyclic compounds. RSC Advances, 2014, 4, 51794-51829.	3.6	59
80	Part I: Nitroalkenes in the synthesis of heterocyclic compounds. RSC Advances, 2014, 4, 48022-48084.	3.6	106
81	Enantioselective synthesis of γ-tetrasubstituted nitrosulfonyl carboxylates and amides via <scp>l</scp> -tert-leucine-derived-squaramide catalyzed conjugate addition of nitrosulfones to acrylates and acrylamides. Organic and Biomolecular Chemistry, 2014, 12, 6425-6431.	2.8	15
82	Synthesis of α-tribromomethylamines via Mg-mediated addition of bromoform to imines. Organic and Biomolecular Chemistry, 2014, 12, 2769-2777.	2.8	5
83	One-Pot Regioselective Synthesis of <i>meta</i> -Terphenyls via [3 + 3] Annulation of Nitroallylic Acetates with Alkylidenemalononitriles. Journal of Organic Chemistry, 2014, 79, 7468-7476.	3.2	46
84	Nitro‣ubstituted Bishomocubanes: Synthesis, Characterization, and Application as Energetic Materials. Chemistry - an Asian Journal, 2014, 9, 3533-3541.	3.3	29
85	Nitroalkenes in the synthesis of carbocyclic compounds. RSC Advances, 2014, 4, 31261.	3.6	78
86	Size effect of gold nanoparticles supported on carbon nanotube as catalysts in selected organic reactions. Tetrahedron, 2014, 70, 6140-6145.	1.9	39
87	Asymmetric synthesis of \$oldsymbol{gamma}\$ -aminophosphonates: The bio-isosteric analogs of \$oldsymbol{gamma}\$ -aminobutyric acid. Journal of Chemical Sciences, 2013, 125, 443-465.	1.5	12
88	Carbon nanotube–gold nanohybrids for selective catalytic oxidation of alcohols. Nanoscale, 2013, 5, 6491.	5.6	68
89	Direct Reductive Amination of Aldehydes Catalyzed by Carbon Nanotube/Gold Nanohybrids. ChemCatChem, 2013, 5, 3571-3575.	3.7	40
90	Enantioselective synthesis of α-nitro-Î́-ketosulfones via a quinine–squaramide catalyzed conjugate addition of α-nitrosulfones to enones. Chemical Communications, 2013, 49, 10632.	4.1	30

#	Article	IF	CITATIONS
91	Synthesis of Fused Bromofurans via Mg-Mediated Dibromocyclopropanation of Cycloalkanone-Derived Chalcones and Cloke–Wilson Rearrangement. Journal of Organic Chemistry, 2013, 78, 910-919.	3.2	36
92	Synthesis of Withasomnines and Their Non-natural Analogues from Aldehydes and 4-Nitro-1-butanol in Three Steps. Journal of Organic Chemistry, 2013, 78, 3482-3486.	3.2	23
93	Synthesis and pyrolysis studies of bis(nitratomethyl)-1,3-bishomocubane—A high-energy high-density liquid. Thermochimica Acta, 2013, 563, 38-45.	2.7	23
94	Regiospecific synthesis of arenofurans via cascade reactions of arenols with Morita–Baylis–Hillman acetates of nitroalkenes and total synthesis of isoparvifuran. Tetrahedron, 2013, 69, 4964-4972.	1.9	65
95	Enantioselective Synthesis of αâ€Aminoâ€Î³â€sulfonyl Phosphonates with a Tetrasubstituted Chiral αâ€Carbon <i>via</i> Quinineâ€Squaramideâ€Catalyzed Michael Addition of Nitrophosphonates to Vinyl Sulfones. Advanced Synthesis and Catalysis, 2013, 355, 1265-1270.	4.3	30
96	Morita-Baylis-Hillman and Rauhut-Currier Reactions of Conjugated Nitroalkenes. Chimia, 2012, 66, 913.	0.6	56
97	Advances in carbon nanotube-noble metal catalyzed organic transformations. Nanotechnology Reviews, 2012, 1, 515-539.	5.8	49
98	Engineered-membranes: A novel concept for clustering of native lipid bilayers. Journal of Colloid and Interface Science, 2012, 388, 300-305.	9.4	4
99	Tethered non-ionic micelles: a matrix for enhanced solubilization of lipophilic compounds. Soft Matter, 2012, 8, 8456.	2.7	17
100	Diastereo- and enantioselective synthesis of densely functionalized cyclohexanones via double Michael addition of curcumins with nitroalkenes. Tetrahedron: Asymmetry, 2012, 23, 605-610.	1.8	19
101	Enantioselective Synthesis of Quaternary α-Aminophosphonates via Conjugate Addition of α-Nitrophosphonates to Enones. Organic Letters, 2012, 14, 980-983.	4.6	40
102	Synthesis of Imidazopyridines from the Morita–Baylis–Hillman Acetates of Nitroalkenes and Convenient Access to Alpidem and Zolpidem. Organic Letters, 2012, 14, 4580-4583.	4.6	174
103	Generation and Trapping of a Cage Annulated Vinylidenecarbene and Approaches to Its Cycloalkyne Isomer. Journal of Organic Chemistry, 2012, 77, 6998-7004.	3.2	7
104	One-Pot, Two-Step Conversion of Aldehydes to Phosphonyl- and Sulfonylpyrazoles Using Bestmann–Ohira Reagent. Organic Letters, 2012, 14, 4070-4073.	4.6	60
105	Synthesis of functionalized and fused furans and pyrans from the Morita–Baylis–Hillman acetates of nitroalkenes. Tetrahedron Letters, 2012, 53, 3349-3352.	1.4	58
106	Highly Selective Synthesis of Pyrazole and Spiropyrazoline Phosphonates via Base-Assisted Reaction of the Bestmann–Ohira Reagent with Enones. Journal of Organic Chemistry, 2011, 76, 4764-4770.	3.2	72
107	Regioselective Synthesis of Sulfonylpyrazoles via Base Mediated Reaction of Diazosulfones with Nitroalkenes and a Facile Entry into Withasomnine. Organic Letters, 2011, 13, 4016-4019.	4.6	66
108	Formation of Fiveâ€Membered Cyclic Orthoesters from Tribromides with Participation of a Neighboring Carbonyl Group. European Journal of Organic Chemistry, 2011, 2011, 2048-2052.	2.4	21

#	Article	IF	CITATIONS
109	Stereoselective construction of carbocycles and heterocycles via cascade reactions involving curcumins and nitroalkenes. Tetrahedron Letters, 2011, 52, 258-262.	1.4	46
110	One-pot three component α-aminoalkylation of conjugated nitroalkenes and nitrodienes. Tetrahedron Letters, 2010, 51, 846-849.	1.4	9
111	Rauhut–Currier type homo- and heterocouplings involving nitroalkenes and nitrodienes. Organic and Biomolecular Chemistry, 2010, 8, 4867.	2.8	50
112	Phosphonylpyrazoles from Bestmannâ^'Ohira Reagent and Nitroalkenes: Synthesis and Dynamic NMR Studies. Journal of Organic Chemistry, 2010, 75, 2197-2205.	3.2	93
113	Morita–Baylis–Hillman Reactions Between Conjugated Nitroalkenes or Nitrodienes and Carbonyl Compounds. European Journal of Organic Chemistry, 2009, 2009, 4091-4101.	2.4	72
114	Facile Synthesis of β-Tribromomethyl and Dibromomethylenated Nitroalkanes via Conjugate Addition of Bromoform to Nitroalkenes. Journal of Organic Chemistry, 2009, 74, 2601-2604.	3.2	18
115	Effect of achiral and mixed chiral ligands on the asymmetric synthesis of γ-nitrophosphonates via Michael addition. Tetrahedron: Asymmetry, 2008, 19, 767-772.	1.8	13
116	Synthetic and Theoretical Investigations on the Construction of Oxanorbornenes by a Michael Addition and Intramolecular Diels–Alder Furan Reaction. European Journal of Organic Chemistry, 2008, 2008, 6106-6118.	2.4	9
117	Enantioselective conjugate addition of dialkyl phosphites to nitroalkenes. Tetrahedron: Asymmetry, 2008, 19, 2335-2338.	1.8	47
118	Isoxazolines from Nitro Compounds: Synthesis and Applications. , 2008, , 1-44.		36
119	Base-Mediated Reaction of the Bestmannâ [~] 'Ohira Reagent with Nitroalkenes for the Regioselective Synthesis of Phosphonylpyrazoles. Organic Letters, 2007, 9, 1125-1128.	4.6	125
120	Synthetic and Mechanistic Investigations on the Rearrangement of 2,3-Unsaturated 1,4-Bis(alkylidene)carbenes to Enediynes. European Journal of Organic Chemistry, 2007, 2007, 2477-2489.	2.4	30
121	Synthesis of benzo-fused medium ring cyclic ethers via a Michael addition–ring closing metathesis strategy involving nitroaliphatic compounds. Tetrahedron, 2007, 63, 11991-11997.	1.9	22
122	Stereospecific approach to α,β-disubstituted nitroalkenes via coupling of α-bromonitroalkenes with boronic acids and terminal acetylenes. Tetrahedron, 2007, 63, 11973-11983.	1.9	48
123	Cinchonine catalyzed diastereo- and enantioselective Michael addition of α-lithiated phosphonates to nitroalkenes. Tetrahedron: Asymmetry, 2007, 18, 2719-2726.	1.8	16
124	Highly efficient hydrazination of conjugated nitroalkenes via imidazole or DMAP mediated Morita–Baylis–Hillman reaction. Organic and Biomolecular Chemistry, 2006, 4, 2525-2528.	2.8	45
125	Hydroxyalkylation of Conjugated Nitroalkenes with Activated Nonenolizable Carbonyl Compounds. Organic Letters, 2006, 8, 1201-1204.	4.6	81
126	Synthesis and anticancer activity studies of α-aminoalkylated conjugated nitroalkenes. Organic and Biomolecular Chemistry, 2006, 4, 3211-3214.	2.8	45

#	Article	IF	CITATIONS
127	The Morita–Baylis–Hillman adducts of β-aryl nitroethylenes with other activated alkenes: synthesis and anticancer activity studies. Chemical Communications, 2006, , 338-340.	4.1	67
128	Synthesis and evaluation of α-hydroxymethylated conjugated nitroalkenes for their anticancer activity: Inhibition of cell proliferation by targeting microtubules. Bioorganic and Medicinal Chemistry, 2006, 14, 8073-8085.	3.0	67
129	A Theoretical Evaluation of the Michael-Acceptor Ability of Conjugated Nitroalkenes. European Journal of Organic Chemistry, 2006, 2006, 4693-4703.	2.4	26
130	Synthesis of arenediynes via the vinylidenecarbene–acetylene rearrangement. Tetrahedron Letters, 2005, 46, 2593-2597.	1.4	11
131	A Stereoselective and Atom-Efficient Approach to Multifunctionalized Five- and Six-Membered Rings via a Novel Michael-Initiated Intramolecular Dielsâ^'Alder Furan Reaction. Journal of Organic Chemistry, 2005, 70, 2235-2243.	3.2	41
132	α-Hydroxymethylation of conjugated nitroalkenes via the Morita–Baylis–Hillman reaction. Tetrahedron Letters, 2004, 45, 4745-4748.	1.4	61
133	Selectivities in the 1,3-dipolar cycloaddition of nitrile oxides to dicyclopentadiene and its derivatives. Tetrahedron, 2004, 60, 1453-1462.	1.9	28
134	Stereoselective Intramolecular 1,3-Dipolar Cycloadditions. Topics in Current Chemistry, 2001, , 1-49.	4.0	59
135	Determination of alkali metal binding selectivities of caged crown ligands by electrospray ionization quadrupole ion trap mass spectrometry. International Journal of Mass Spectrometry, 2001, 204, 133-142.	1.5	36
136	Synthesis, alkali metal picrate extraction, and alkali metal cation binding selectivities of some new cageâ€annulated polyoxamacrocyclic crown ethers. Journal of Heterocyclic Chemistry, 2001, 38, 1361-1368.	2.6	20
137	Thiele's acid revisited: Isolation and characterization of two minor products formed by carbonation of cyclopentadienide anion. Tetrahedron, 1998, 54, 12691-12698.	1.9	19
138	Study of a Vinylidenecarbeneâ´´Cycloalkyne Equilibrium in theD3-Trishomocubyl Ring System. Journal of the American Chemical Society, 1998, 120, 6871-6876.	13.7	18
139	The Important Role of Heteroaromatics in the Design of Efficient Second-Order Nonlinear Optical Molecules:Â Theoretical Investigation on Pushâ~Pull Heteroaromatic Stilbenes. Journal of the American Chemical Society, 1996, 118, 12443-12448.	13.7	280
140	Additions of organomanganese reagents to conjugated nitroolefins. Journal of Organometallic Chemistry, 1996, 518, 69-77.	1.8	27
141	Selectivities in the formation of pyridines and pyrimidines by ammonia-induced cyclocondensations of vinamidiniums. Tetrahedron, 1994, 50, 8127-8142.	1.9	17