
Eliana Barreto-Bergter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6675880/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Human Antibodies against a Purified Glucosylceramide from Cryptococcus neoformans Inhibit Cell Budding and Fungal Growth. Infection and Immunity, 2000, 68, 7049-7060.	2.2	215
2	Scedosporium and Lomentospora: an updated overview of underrated opportunists. Medical Mycology, 2018, 56, S102-S125.	0.7	186
3	An α-Glucan of Pseudallescheria boydii Is Involved in Fungal Phagocytosis and Toll-like Receptor Activation. Journal of Biological Chemistry, 2006, 281, 22614-22623.	3.4	127
4	Characterization of glucosylceramides in Pseudallescheria boydii and their involvement in fungal differentiation. Glycobiology, 2002, 12, 251-260.	2.5	96
5	Â-Galactofuranose-containing O-linked oligosaccharides present in the cell wall peptidogalactomannan of Aspergillus fumigatus contain immunodominant epitopes. Glycobiology, 2003, 13, 681-692.	2.5	96
6	Fungal glycans and the innate immune recognition. Frontiers in Cellular and Infection Microbiology, 2014, 4, 145.	3.9	84
7	Structure and biological functions of fungal cerebrosides. Anais Da Academia Brasileira De Ciencias, 2004, 76, 67-84.	0.8	79
8	In Vitro Activity of the Antifungal Plant Defensin RsAFP2 against <i>Candida</i> Isolates and Its In Vivo Efficacy in Prophylactic Murine Models of Candidiasis. Antimicrobial Agents and Chemotherapy, 2008, 52, 4522-4525.	3.2	79
9	Monoclonal Antibody to Fungal Glucosylceramide Protects Mice against Lethal <i>Cryptococcus neoformans</i> Infection. Vaccine Journal, 2007, 14, 1372-1376.	3.1	74
10	Sphingolipids as targets for treatment of fungal infections. Future Medicinal Chemistry, 2016, 8, 1469-1484.	2.3	74
11	Toll-like receptors (TLR2 and TLR4) recognize polysaccharides of Pseudallescheria boydii cell wall. Carbohydrate Research, 2012, 356, 260-264.	2.3	69
12	A monoclonal antibody to glucosylceramide inhibits the growth of Fonsecaea pedrosoi and enhances the antifungal action of mouse macrophages. Microbes and Infection, 2004, 6, 657-665.	1.9	64
13	Structural Characterization and Anti-HSV-1 and HSV-2 Activity of Glycolipids from the Marine Algae Osmundaria obtusiloba Isolated from Southeastern Brazilian Coast. Marine Drugs, 2012, 10, 918-931.	4.6	63
14	Glucosylceramides in Colletotrichum gloeosporioides are involved in the differentiation of conidia into mycelial cells. FEBS Letters, 2004, 561, 137-143.	2.8	56
15	Involvement of peptidorhamnomannan in the interaction of Pseudallescheria boydii and HEp2 cells. Microbes and Infection, 2004, 6, 1259-1267.	1.9	53
16	Structure, Cellular Distribution, Antigenicity, and Biological Functions of Fonsecaea pedrosoi Ceramide Monohexosides. Infection and Immunity, 2005, 73, 7860-7868.	2.2	49
17	Structural Analysis of Fungal Cerebrosides. Frontiers in Microbiology, 2011, 2, 239.	3.5	46
18	Pseudallescheria boydii releases metallopeptidases capable of cleaving several proteinaceous compounds. Research in Microbiology, 2006, 157, 425-432.	2.1	44

#	Article	IF	CITATIONS
19	Biofilm Formation by Pseudallescheria/Scedosporium Species: A Comparative Study. Frontiers in Microbiology, 2017, 8, 1568.	3.5	40
20	TLR4 Recognizes Pseudallescheria boydii Conidia and Purified Rhamnomannans. Journal of Biological Chemistry, 2010, 285, 40714-40723.	3.4	38
21	Characterization of Scedosporium apiospermum Glucosylceramides and Their Involvement in Fungal Development and Macrophage Functions. PLoS ONE, 2014, 9, e98149.	2.5	36
22	Extracellular Peptidase in the Fungal Pathogen Pseudallescheria boydii. Current Microbiology, 2006, 53, 18-22.	2.2	34
23	Glycoconjugates and polysaccharides from the <i>Scedosporium</i> / <i>Pseudallescheria boydii</i> complex: structural characterisation, involvement in cell differentiation, cell recognition and virulence. Mycoses, 2011, 54, 28-36.	4.0	31
24	Structures of the O-linked oligosaccharides of a complex glycoconjugate from Pseudallescheria boydii. Glycobiology, 2005, 15, 895-904,.	2.5	28
25	Monoclonal Antibodies Against Peptidorhamnomannans of Scedosporium apiospermum Enhance the Pathogenicity of the Fungus. PLoS Neglected Tropical Diseases, 2010, 4, e853.	3.0	28
26	O-Glycosylation in Cell Wall Proteins in Scedosporium prolificans Is Critical for Phagocytosis and Inflammatory Cytokines Production by Macrophages. PLoS ONE, 2015, 10, e0123189.	2.5	26
27	Biochemical characterization of potential virulence markers in the human fungal pathogen <i>Pseudallescheria boydii</i> . Medical Mycology, 2009, 47, 375-386.	0.7	24
28	Mycelial forms of Pseudallescheria boydii present ectophosphatase activities. Archives of Microbiology, 2007, 188, 159-166.	2.2	23
29	Chemotaxis and adherence to fungal surfaces are key components of the behavioral response of <i>Burkholderia terrae </i> BS001 to two selected soil fungi. FEMS Microbiology Ecology, 2016, 92, fiw164.	2.7	19
30	Glycosphingolipids from Magnaporthe grisea cells: expression of a ceramide dihexoside presenting phytosphingosine as the long-chain base. Archives of Biochemistry and Biophysics, 2002, 405, 205-213.	3.0	17
31	Proteins and Peptidases from Conidia and Mycelia of Scedosporium apiospermum Strain HLPB. Mycopathologia, 2009, 167, 25-30.	3.1	17
32	Psd2 pea defensin shows a preference for mimetic membrane rafts enriched with glucosylceramide and ergosterol. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 713-728.	2.6	17
33	Î2-Galactofuranose-containing structures present in the cell wall of the saprophytic fungus Cladosporium (Hormoconis) resinae. Research in Microbiology, 2010, 161, 720-728.	2.1	15
34	Metallopeptidase inhibitors arrest vital biological processes in the fungal pathogen Scedosporium apiospermum. Mycoses, 2011, 54, 105-112.	4.0	14
35	Glucosylceramides From Lomentospora prolificans Induce a Differential Production of Cytokines and Increases the Microbicidal Activity of Macrophages. Frontiers in Microbiology, 2019, 10, 554.	3.5	14
36	The Role of Hydrophobicity and Surface Receptors at Hyphae of Lyophyllum sp. Strain Karsten in the Interaction with Burkholderia terrae BS001 – Implications for Interactions in Soil. Frontiers in Microbiology, 2016, 7, 1689.	3.5	12

#	Article	IF	CITATIONS
37	Structural analysis of glucosylceramides (GlcCer) from species of the Pseudallescheria/Scedosporium complex. Fungal Biology, 2016, 120, 166-172.	2.5	12
38	Sphingolipid biosynthetic pathway is crucial for growth, biofilm formation and membrane integrity of Scedosporium boydii. Future Medicinal Chemistry, 2019, 11, 2905-2917.	2.3	12
39	A peptidogalactomannan isolated from Cladosporium herbarum induces defense-related genes in BY-2 tobacco cells. Plant Physiology and Biochemistry, 2018, 126, 206-216.	5.8	10
40	Miltefosine Against Scedosporium and Lomentospora Species: Antifungal Activity and Its Effects on Fungal Cells. Frontiers in Cellular and Infection Microbiology, 2021, 11, 698662.	3.9	10
41	Scedosporium Cell Wall: From Carbohydrate-Containing Structures to Host–Pathogen Interactions. Mycopathologia, 2020, 185, 931-946.	3.1	10
42	Peptidorhamnomannan negatively modulates the immune response in a scedosporiosis murine model. Medical Mycology, 2016, 54, 846-855.	0.7	8
43	Identification of Promising Antifungal Drugs against Scedosporium and Lomentospora Species after Screening of Pathogen Box Library. Journal of Fungi (Basel, Switzerland), 2021, 7, 803.	3.5	8
44	Antiviral activity of glucosylceramides isolated from Fusarium oxysporum against Tobacco mosaic virus infection. PLoS ONE, 2020, 15, e0242887.	2.5	8
45	Ceramide glycosylation and fatty acid hydroxylation influence serological reactivity inTrypanosoma cruziglycosphingolipids. FEMS Microbiology Letters, 2005, 244, 47-52.	1.8	7
46	<i>^{ĵ2}</i> –1,6-linked Galactofuranose- rich peptidogalactomannan of <i>Fusarium oxysporum</i> is important in the activation of macrophage mechanisms and as a potential diagnostic antigen. Medical Mycology, 2019, 57, 234-245.	0.7	7
47	Peptidorhamanomannan: A surface fungal glycoconjugate from <i>Scedosporium aurantiacum</i> and <i>Scedosporium minutisporum</i> and its recognition by macrophages. Medical Mycology, 2021, 59, 441-452.	0.7	7
48	Humoral Immune Response in Aspergillosis: An Immunodominant Glycoprotein of 35 kDa from Aspergillus flavus. Current Microbiology, 2003, 47, 0163-0168.	2.2	6
49	Monohexosylceramides from Rhizopus Species Isolated from Brazilian Caatinga: Chemical Characterization and Evaluation of Their Anti-Biofilm and Antibacterial Activities. Molecules, 2018, 23, 1331.	3.8	6
50	Structural Differences Influence Biological Properties of Glucosylceramides from Clinical and Environmental Isolates of Scedosporium aurantiacum and Pseudallescheria minutispora. Journal of Fungi (Basel, Switzerland), 2019, 5, 62.	3.5	6
51	Peptidorhamnomannans From Scedosporium and Lomentospora Species Display Microbicidal Activity Against Bacteria Commonly Present in Cystic Fibrosis Patients. Frontiers in Cellular and Infection Microbiology, 2020, 10, 598823.	3.9	6
52	Glucosylceramide Plays a Role in Fungal Germination, Lipid Raft Organization and Biofilm Adhesion of the Pathogenic Fungus Scedosporium aurantiacum. Journal of Fungi (Basel, Switzerland), 2020, 6, 345.	3.5	6
53	Passion fruit plants treated with biostimulants induce defense-related and phytohormone-associated genes. Plant Gene, 2022, 30, 100357.	2.3	5
54	Peptidorhamnomannan from Lomentospora prolificans modulates the inflammatory response in macrophages infected with Candida albicans. BMC Microbiology, 2020, 20, 245.	3.3	4

#	Article	IF	CITATIONS
55	A fungal glycoprotein mitigates passion fruit woodiness disease caused by Cowpea aphid-borne mosaic virus (CABMV) in Passiflora edulis. BioControl, 2022, 67, 75-87.	2.0	4
56	Sphingolipids: Functional and Biological Aspects in Mammals, Plants, and Fungi. Springer Protocols, 2020, , 21-40.	0.3	1
57	Peptidogalactomannan from Histoplasma capsulatum yeast cell wall: role of the chemical structure in recognition and activation by peritoneal macrophages. Brazilian Journal of Microbiology, 2021, 52, 479-489.	2.0	0
58	Glucosylceramides from Cladosporium and Their Roles in Fungi–Plant Interaction. Microbiology Research, 2022, 13, 350-365.	1.9	0