
Jean-Luc Pellequer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6675571/publications.pdf Version: 2024-02-01

IEAN-LUC PELLEOLIER

#	Article	IF	CITATIONS
1	Intrinsically Disordered Tardigrade Proteins Selfâ€Assemble into Fibrous Gels in Response to Environmental Stress. Angewandte Chemie - International Edition, 2022, 61, .	7.2	28
2	Intrinsically Disordered Tardigrade Proteins Selfâ€Assemble into Fibrous Gels in Response to Environmental Stress. Angewandte Chemie, 2022, 134, e202109961.	1.6	2
3	Special collection for the ninth AFM BioMed conference. Journal of Molecular Recognition, 2022, 35, e2954.	1.1	1
4	Frontispiece: Intrinsically Disordered Tardigrade Proteins Selfâ€Assemble into Fibrous Gels in Response to Environmental Stress. Angewandte Chemie - International Edition, 2022, 61, .	7.2	0
5	Frontispiz: Intrinsically Disordered Tardigrade Proteins Selfâ€Assemble into Fibrous Gels in Response to Environmental Stress. Angewandte Chemie, 2022, 134, .	1.6	0
6	Structural and functional characterization of DdrC, a novel DNA damage-induced nucleoid associated protein involved in DNA compaction. Nucleic Acids Research, 2022, 50, 7680-7696.	6.5	8
7	Insertion and activation of functional Bacteriorhodopsin in a floating bilayer. Journal of Colloid and Interface Science, 2021, 597, 370-382.	5.0	4
8	Nanoscale surface structures of DNA bound to <i>Deinococcus radiodurans</i> HU unveiled by atomic force microscopy. Nanoscale, 2020, 12, 22628-22638.	2.8	9
9	Exolysin (ExIA) from Pseudomonas aeruginosa Punctures Holes into Target Membranes Using a Molten Globule Domain. Journal of Molecular Biology, 2020, 432, 4466-4480.	2.0	8
10	Serial femtosecond crystallography on in vivo-grown crystals drives elucidation of mosquitocidal Cyt1Aa bioactivation cascade. Nature Communications, 2020, 11, 1153.	5.8	31
11	The Importance of Characterizing the Hemoglobin Instability of New Variants: The Case of Hb Dompierre [β29(B11)Gly→Arg, <i>HBB</i> : c.88G>C]. Hemoglobin, 2020, 44, 13-16.	0.4	0
12	Visualizing the functional 3D shape and topography of long noncoding RNAs by single-particle atomic force microscopy and in-solution hydrodynamic techniques. Nature Protocols, 2020, 15, 2107-2139.	5.5	14
13	Conserved Pseudoknots in IncRNA MEG3 Are Essential for Stimulation of the p53 Pathway. Molecular Cell, 2019, 75, 982-995.e9.	4.5	138
14	Structural and Functional Characterization of the Type Three Secretion System (T3SS) Needle of Pseudomonas aeruginosa. Frontiers in Microbiology, 2019, 10, 573.	1.5	37
15	Externalized histone H4 orchestrates chronic inflammation by inducing lytic cell death. Nature, 2019, 569, 236-240.	13.7	268
16	The Plasma Factor XIII Heterotetrameric Complex Structure: Unexpected Unequal Pairing within a Symmetric Complex. Biomolecules, 2019, 9, 765.	1.8	13
17	On the Operational Aspects of Measuring Nanoparticle Sizes. Nanomaterials, 2019, 9, 18.	1.9	41
18	Fifteen years of <i>Servitude et Grandeur</i> to the application of a biophysical technique in medicine: The tale of AFMBioMed. Journal of Molecular Recognition, 2019, 32, e2773.	1.1	4

#	Article	IF	CITATIONS
19	Low phosphate activates STOP1-ALMT1 to rapidly inhibit root cell elongation. Nature Communications, 2017, 8, 15300.	5.8	268
20	Conditions to minimize soft single biomolecule deformation when imaging with atomic force microscopy. Journal of Structural Biology, 2017, 197, 322-329.	1.3	18
21	Standardized Nanomechanical Atomic Force Microscopy Procedure (SNAP) for Measuring Soft and Biological Samples. Scientific Reports, 2017, 7, 5117.	1.6	195
22	Seventh International AFMBioMed Conference on AFM in Life Sciences and Medicine, April 11 to 15, 2016, Porto, Portugal. Journal of Molecular Recognition, 2017, 30, e2681.	1.1	3
23	Factor VII variants: which thromboplastin is the most relevant for FVII activity measurement?. Hematologie, 2017, 23, 181-187.	0.0	1
24	Sixth International AFM BioMed Conference on AFM in life sciences and medicine, December 13 to 17, 2014, San Diego, California. Journal of Molecular Recognition, 2016, 29, 404-405.	1.1	4
25	Combined small angle X-ray solution scattering with atomic force microscopy for characterizing radiation damage on biological macromolecules. BMC Structural Biology, 2016, 16, 18.	2.3	13
26	Safety, Stability and Pharmacokinetic Properties of superFactor Va, a Novel Engineered Coagulation Factor V for Treatment of Severe Bleeding. Pharmaceutical Research, 2016, 33, 1517-1526.	1.7	18
27	Atomic force microscope, molecular imaging, and analysis. Journal of Molecular Recognition, 2016, 29, 51-55.	1.1	14
28	Factor Va alternative conformation reconstruction using atomic force microscopy. Thrombosis and Haemostasis, 2014, 112, 1167-1173.	1.8	15
29	Effect of hydration and thermal treatment on ceria surface using non-intrusive techniques. Journal of Nuclear Materials, 2014, 444, 359-367.	1.3	8
30	The sodium/iodide symporter: State of the art of its molecular characterization. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 244-253.	1.4	68
31	Virus particle assembly into crystalline domains enabled by the coffee ring effect. Soft Matter, 2014, 10, 5458-5462.	1.2	24
32	Self-assembled monolayer for AFM measurements of Tobacco Mosaic Virus (TMV) at the atomic level. RSC Advances, 2014, 4, 11927.	1.7	9
33	Fifth International AFMBioMed Conference on AFM in Life Sciences and Medicine, 7-11 May 2013, Shanghai, China. Journal of Molecular Recognition, 2014, 27, 1-2.	1.1	5
34	Nanoscale structural features determined by AFM for single virus particles. Nanoscale, 2013, 5, 10877.	2.8	40
35	DockAFM: benchmarking protein structures by docking under AFM topographs. Bioinformatics, 2013, 29, 3230-3231.	1.8	17
36	Adepth: new representation and its implications for atomic depths of macromolecules. Nucleic Acids Research, 2013, 41, W412-W416.	6.5	17

#	Article	IF	CITATIONS
37	Conformational dynamics of individual antibodies using computational docking and AFM. Journal of Molecular Recognition, 2013, 26, 596-604.	1.1	25
38	Piezoelectric tuning fork probe for atomic force microscopy imaging and specific recognition force spectroscopy of an enzyme and its ligand. Journal of Molecular Recognition, 2013, 26, 521-531.	1.1	11
39	Mapping the Epitopes of a Neutralizing Antibody Fragment Directed against the Lethal Factor of Bacillus anthracis and Cross-Reacting with the Homologous Edema Factor. PLoS ONE, 2013, 8, e65855.	1.1	10
40	Functional mapping of the A2 domain from human factor VIII. Thrombosis and Haemostasis, 2012, 107, 315-327.	1.8	9
41	Removal of Non-uniform Stripe Noises from AFM Images. , 2012, , .		2
42	Is the coexistence of thromboembolic events and Factor VII deficiency fortuitous?. Thrombosis Research, 2012, 130, S47-S49.	0.8	17
43	Pilot in vivo toxicological investigation of boron nitride nanotubes. International Journal of Nanomedicine, 2012, 7, 19.	3.3	76
44	AFMBioMed Conference: Paris, France, August 2011. Journal of Molecular Recognition, 2012, 25, 239-240.	1.1	7
45	Computational Reconstruction of Multidomain Proteins Using Atomic Force Microscopy Data. Structure, 2012, 20, 113-120.	1.6	28
46	Functional mapping of factor VIII C2 domain. Thrombosis and Haemostasis, 2011, 106, 121-131.	1.8	8
47	DeStripe: frequency-based algorithm for removing stripe noises from AFM images. BMC Structural Biology, 2011, 11, 7.	2.3	71
48	Single and multiple bonds in (strept)avidin–biotin interactions. Journal of Molecular Recognition, 2011, 24, 490-502.	1.1	69
49	Tobacco mosaic virus as an AFM tip calibrator. Journal of Molecular Recognition, 2011, 24, 503-510.	1.1	30
50	On stabilization of a neutral aromatic ligand by π–cation interactions in monoclonal antibodies. Biophysical Chemistry, 2011, 154, 35-40.	1.5	12
51	Predicting the disruption by UO ₂ ²⁺ of a proteinâ€ligand interaction. Protein Science, 2010, 19, 2219-2230.	3.1	32
52	Structure-Activity Relationships in Peptide-Antibody Complexes: Implications for Epitope Prediction and Development of Synthetic Peptide Vaccines. Current Medicinal Chemistry, 2009, 16, 953-964.	1.2	65
53	Second international <i>AFM BioMed Conference</i> on AFM in life sciences and medicine, 16–18 October 2008, Monterey, CA, USA. Journal of Molecular Recognition, 2009, 22, 345-346.	1.1	8
54	Interdomain engineered disulfide bond permitting elucidation of mechanisms of inactivation of coagulation factor Va by activated protein C. Protein Science, 2009, 11, 2091-2101.	3.1	45

#	Article	IF	CITATIONS
55	Deciphering the Energy Landscape of the Interaction Uranyl-DCP with Antibodies Using Dynamic Force Spectroscopy. Biophysical Journal, 2008, 95, L63-L65.	0.2	6
56	Characterization of a Factor Xa Binding Site on Factor Va near the Arg-506 Activated Protein C Cleavage Site. Journal of Biological Chemistry, 2007, 282, 21848-21855.	1.6	25
57	Energy Landscape of Chelated Uranyl: Antibody Interactions by Dynamic Force Spectroscopy. Biophysical Journal, 2007, 93, 645-654.	0.2	42
58	Towards a consensus on datasets and evaluation metrics for developing B-cell epitope prediction tools. Journal of Molecular Recognition, 2007, 20, 75-82.	1.1	209
59	On molecular recognition of an uranyl chelate by monoclonal antibodies. Journal of Molecular Recognition, 2007, 20, 508-515.	1.1	8
60	Past, present and future of atomic force microscopy in life sciences and medicine. Journal of Molecular Recognition, 2007, 20, 418-431.	1.1	165
61	Editorial. Journal of Molecular Recognition, 2007, 20, 417-417.	1.1	9
62	Multi-template approach to modeling engineered disulfide bonds. Proteins: Structure, Function and Bioinformatics, 2006, 65, 192-202.	1.5	33
63	Structural basis for preferential binding of non-ortho-substituted polychlorinated biphenyls by the monoclonal antibody S2B1. Journal of Molecular Recognition, 2005, 18, 282-294.	1.1	16
64	Deciphering structure and topology of conserved COG2042 orphan proteins. BMC Structural Biology, 2005, 5, 3.	2.3	7
65	INTERALIGN: interactive alignment editor for distantly related protein sequences. Bioinformatics, 2005, 21, 3166-3167.	1.8	8
66	Identification of Functionally Important Residues in Proteins Using Comparative Models. Current Medicinal Chemistry, 2004, 11, 595-605.	1.2	29
67	Two Distinct Binding Sites for High Potential Iron-Sulfur Protein and Cytochrome c on the Reaction Center-bound Cytochrome of Rubrivivax gelatinosus. Journal of Biological Chemistry, 2004, 279, 32545-32553.	1.6	8
68	BEPITOPE: predicting the location of continuous epitopes and patterns in proteins. Journal of Molecular Recognition, 2003, 16, 20-22.	1.1	156
69	Identification, Purification, and Characterization of an Eukaryotic-like Phosphopantetheine Adenylyltransferase (Coenzyme A Biosynthetic Pathway) in the Hyperthermophilic Archaeon Pyrococcus abyssi. Journal of Biological Chemistry, 2003, 278, 31078-31087.	1.6	27
70	Model of a Ternary Complex between Activated Factor VII, Tissue Factor and Factor IX. Thrombosis and Haemostasis, 2002, 88, 74-82.	1.8	35
71	Functional characterization of an anti-estradiol antibody by site-directed mutagenesis and molecular modelling: modulation of binding properties and prominent role of the VLdomain in estradiol recognition. Journal of Molecular Recognition, 2002, 15, 6-18.	1.1	9
72	Model of a ternary complex between activated factor VII, tissue factor and factor IX. Thrombosis and Haemostasis, 2002, 88, 74-82.	1.8	10

#	Article	IF	CITATIONS
73	F-Box Protein Grr1 Interacts with Phosphorylated Targets via the Cationic Surface of Its Leucine-Rich Repeat. Molecular and Cellular Biology, 2001, 21, 2506-2520.	1.1	67
74	Blood coagulation: The outstanding hydrophobic residues. Current Biology, 2000, 10, R237-R240.	1.8	5
75	Three-dimensional Model of Coagulation Factor Va Bound to Activated Protein C. Thrombosis and Haemostasis, 2000, 84, 849-857.	1.8	66
76	Structural Basis for Hemophilia A Caused by Mutations in the C Domains of Blood Coagulation Factor VIII. Thrombosis and Haemostasis, 2000, 83, 78-85.	1.8	26
77	Stabilization of bound polycyclic aromatic hydrocarbons by a π-cation interaction. Journal of Molecular Biology, 2000, 302, 691-699.	2.0	40
78	Architecture of Antibody Binding Sites for Polynuclear Aromatic Hydrocarbons. ACS Symposium Series, 2000, , 398-416.	0.5	0
79	Unraveling the effect of changes in conformation and compactness at the antibody VL-VH interface upon antigen binding. Journal of Molecular Recognition, 1999, 12, 267-275.	1.1	27
80	Substrate specificity of prostate-specific antigen (PSA). Chemistry and Biology, 1998, 5, 475-488.	6.2	86
81	Homology Models of the C Domains of Blood Coagulation Factors V and VIII: A Proposed Membrane Binding Mode for FV and FVIII C2 Domains. Blood Cells, Molecules, and Diseases, 1998, 24, 448-461.	0.6	52
82	A thermodynamic analysis discriminating loop backbone conformations. Techniques in Protein Chemistry, 1997, , 755-766.	0.3	0
83	Correlation between the location of antigenic sites and the prediction of turns in proteins. Immunology Letters, 1993, 36, 83-99.	1.1	159