Janusz Edward Kasperczyk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6675416/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assessment of encrustation and physicochemical properties of poly(lactideâ€glycolide) <scp>â€</scp> Papaverine hydrochloride coating on ureteral <scp>doubleâ€J</scp> stents after longâ€term flow of artificial urine. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 367-381.	3.4	4
2	Dual-jet electrospun PDLGA/PCU nonwovens and their mechanical and hydrolytic degradation properties. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 126, 105050.	3.1	4
3	Docetaxelâ€loaded scaffolds manufactured by <scp>3D</scp> printing as model, biodegradable prostatic stents. Journal of Applied Polymer Science, 2022, 139, .	2.6	3
4	Nanoparticles Loaded with Docetaxel and Resveratrol as an Advanced Tool for Cancer Therapy. Biomedicines, 2022, 10, 1187.	3.2	18
5	Nanospheres encapsulated everolimus delivery into arterial wall–the tissue pharmacokinetics and vascular response experimental study. Catheterization and Cardiovascular Interventions, 2021, 98, 914-922.	1.7	1
6	Anticancer Activity of the Acetylenic Derivative of Betulin Phosphate Involves Induction of Necrotic-Like Death in Breast Cancer Cells In Vitro. Molecules, 2021, 26, 615.	3.8	10
7	Cytotoxic effect of targeted biodegradable epothilone B and rapamycin coâ€loaded nanocarriers on breast cancer cells. Journal of Biomedical Materials Research - Part A, 2021, 109, 1693-1700.	4.0	6
8	Single- versus Dual-Targeted Nanoparticles with Folic Acid and Biotin for Anticancer Drug Delivery. Pharmaceutics, 2021, 13, 326.	4.5	54
9	Bioresorbable, electrospun nonwoven for delayed and prolonged release of temozolomide and nimorazole. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 161, 29-36.	4.3	7
10	Electrospun paclitaxel delivery system based on PGCL/PLGA in local therapy combined with brachytherapy. International Journal of Pharmaceutics, 2021, 602, 120596.	5.2	12
11	Poly(lactide-co-trimethylene carbonate) coatings with ciprofloxacin, fusidic acid and azithromycin. The effect of the drug on the degradation and biological activity against different Staphylococcus reference strains. European Polymer Journal, 2021, 155, 110579.	5.4	2
12	Functional Properties of Polyurethane Ureteral Stents with PLGA and Papaverine Hydrochloride Coating. International Journal of Molecular Sciences, 2021, 22, 7705.	4.1	10
13	Correlation between the composition of PLA-based folate targeted micelles and release of phosphonate derivative of betulin. Journal of Drug Delivery Science and Technology, 2021, 65, 102717.	3.0	4
14	The Role of the Mechanical, Structural, and Thermal Properties of Poly(l-lactide-co-glycolide-co-trimethylene carbonate) in the Development of Rods with Aripiprazole. Polymers, 2021, 13, 3556.	4.5	3
15	Comparison of PLA-Based Micelles and Microspheres as Carriers of Epothilone B and Rapamycin. The Effect of Delivery System and Polymer Composition on Drug Release and Cytotoxicity against MDA-MB-231 Breast Cancer Cells. Pharmaceutics, 2021, 13, 1881.	4.5	7
16	Study of Physicochemical Properties ofÂCoCrMo Alloy with PLCL Polymer Coating Intended for Urology. Advances in Intelligent Systems and Computing, 2021, , 259-268.	0.6	0
17	Development of antibacterial, ciprofloxacinâ€eluting biodegradable coatings on Ti6Al7Nb implants to prevent periâ€implant infections. Journal of Biomedical Materials Research - Part A, 2020, 108, 1006-1015.	4.0	18
18	The Estimation of Blood Paramagnetic Center Changes during Burns Management with Biodegradable Propolis-Nanofiber Dressing. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-9.	4.0	7

#	Article	IF	CITATIONS
19	Biodegradable Electrospun Nonwovens Releasing Propolis as a Promising Dressing Material for Burn Wound Treatment. Pharmaceutics, 2020, 12, 883.	4.5	20
20	Triple-Shape Memory Behavior of Modified Lactide/Glycolide Copolymers. Polymers, 2020, 12, 2984.	4.5	5
21	Influence of a shape of gold nanoparticles on the dose enhancement in the wide range of gold mass concentration for high-energy X-ray beams from a medical linac. Reports of Practical Oncology and Radiotherapy, 2020, 25, 579-585.	0.6	11
22	Designing Biodegradable Wafers Based on Poly(L-lactide-co-glycolide) and Poly(glycolide-co-ε-caprolactone) for the Prolonged and Local Release of Idarubicin for the Therapy of Glioblastoma Multiforme. Pharmaceutical Research, 2020, 37, 90.	3.5	12
23	Self-assembled micelles prepared from bio-based hydroxypropyl methyl cellulose and polylactide amphiphilic block copolymers for anti-tumor drug release. International Journal of Biological Macromolecules, 2020, 154, 39-47.	7.5	25
24	Bioresorbable hydrogels prepared by photo-initiated crosslinking of diacrylated PTMC-PEG-PTMC triblock copolymers as potential carrier of antitumor drugs. Saudi Pharmaceutical Journal, 2020, 28, 290-299.	2.7	13
25	Electrochemical and Biological Performance of Biodegradable Polymer Coatings on Ti6Al7Nb Alloy. Materials, 2020, 13, 1758.	2.9	5
26	EPR Spectroscopic Examination of Different Types of Paramagnetic Centers in the Blood in the Course of Burn Healing. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-8.	4.0	8
27	Electrospun, drug-enriched bioresorbable nonwovens based on poly(glycolide-É›-caprolactone) and poly(d,l-lactide-glycolide) for urological applications. Polymer Degradation and Stability, 2019, 167, 94-101.	5.8	4
28	Dual-targeted biodegradable micelles for anticancer drug delivery. Materials Letters, 2019, 241, 187-189.	2.6	29
29	New phosphate derivatives of betulin as anticancer agents: Synthesis, crystal structure, and molecular docking study. Bioorganic Chemistry, 2019, 87, 613-628.	4.1	24
30	Cytotoxic Effect of Paclitaxel and Lapatinib Co-Delivered in Polylactide-co-Poly(ethylene glycol) Micelles on HER-2-Negative Breast Cancer Cells. Pharmaceutics, 2019, 11, 169.	4.5	24
31	Bioresorbable filomicelles for targeted delivery of betulin derivative – In vitro study. International Journal of Pharmaceutics, 2019, 557, 43-52.	5.2	18
32	Adhesion of Poly(lactide-glycolide) Coating (PLGA) on the Ti6Al7Nb Alloy Substrate. Advances in Intelligent Systems and Computing, 2019, , 578-589.	0.6	4
33	Biodegradable polymer coatings on Ti6Al7Nb alloy. Acta of Bioengineering and Biomechanics, 2019, 21, .	0.4	11
34	Novel inflammatory biomarkers may reflect subclinical inflammation in young healthy adults with obesity. Endokrynologia Polska, 2019, 70, 135-142.	1.0	12
35	Biodegradable polymer coatings on Ti6Al7Nb alloy. Acta of Bioengineering and Biomechanics, 2019, 21, 83-92.	0.4	3
36	The influence of drug-polymer interactions on release of antirestenotic agent from bioresorbable scaffolds. Materials Letters, 2018, 223, 82-85.	2.6	14

Janusz Edward Kasperczyk

#	Article	IF	CITATIONS
37	A project of bioresorbable self-expanding vascular stents. The crimping process numerical simulation. AIP Conference Proceedings, 2018, , .	0.4	1
38	Comparison of extraction methods of sirolimus from polymeric coatings of bioresorbable vascular scaffolds. Materials Letters, 2018, 214, 220-223.	2.6	14
39	Effect of vascular scaffold composition on release of sirolimus. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 132, 41-49.	4.3	9
40	Formulation of delivery systems with risperidone based on biodegradable terpolymers. International Journal of Pharmaceutics, 2018, 548, 159-172.	5.2	12
41	Corrosion resistance of Ti6Al4V alloy coated with caprolactone-based biodegradable polymeric coatings. Eksploatacja l Niezawodnosc, 2018, 20, 30-38.	2.0	17
42	Antiproliferative and proapoptotic activity of ursolic acid in human skin malignant melanoma cells. Postepy Higieny I Medycyny Doswiadczalnej, 2018, 72, 1148-1155.	0.1	0
43	Synthesis of trimethylene carbonate/ <i>ïµ</i> -caprolactone copolymers initiated with zinc alkoxide: influence of copolymer chain microstructure on thermal and mechanical properties. Polymer International, 2017, 66, 1259-1268.	3.1	2
44	Effect of polymer degradation on prolonged release of paclitaxel from filomicelles of polylactide/poly(ethylene glycol) block copolymers. Materials Science and Engineering C, 2017, 75, 918-925.	7.3	28
45	Obtaining aliphatic branched polycarbonates via simple copolymerization of trimethylene carbonate with cyclic carbonate containing pendant ester groups. Journal of Polymer Science Part A, 2017, 55, 808-819.	2.3	6
46	State-of-the-art of transcatheter treatment of aortic valve stenosis and the overview of the InFlow project aiming at developing the first Polish TAVI system. Cardiology Journal, 2017, 24, 685-694.	1.2	1
47	Corrosion resistance of PLGA-coated biomaterials. Acta of Bioengineering and Biomechanics, 2017, 19, 173-179.	0.4	6
48	Synthesis and properties of trimethylene carbonate/l-lactide copolymers obtained with the use of zinc-based initiators. Materials Today Communications, 2016, 7, 140-148.	1.9	2
49	Shape-Memory Terpolymer Rods with 17-β-estradiol for the Treatment of Neurodegenerative Diseases: an In Vitro and In Vivo Study. Pharmaceutical Research, 2016, 33, 2967-2978.	3.5	16
50	Multidrug PLA-PEG filomicelles for concurrent delivery of anticancer drugs—The influence of drug-drug and drug-polymer interactions on drug loading and release properties. International Journal of Pharmaceutics, 2016, 510, 365-374.	5.2	38
51	A Nuclear Magnetic Resonance Spectroscopy as a Method for Evaluation of In Vivo Poly- <scp>l</scp> -Lactide Biodegradation Kinetics From Stent-Polymer Matrices. Journal of Cardiovascular Pharmacology and Therapeutics, 2016, 21, 93-99.	2.0	7
52	Influence of 28-O-propynoylbetulin on proliferation and apoptosis of melanotic and amelanotic human melanoma cells. Postepy Higieny I Medycyny Doswiadczalnej, 2016, 70, 1404-1408.	0.1	1
53	Scaffolds with shape memory behavior for the treatment of large bone defects. Journal of Biomedical Materials Research - Part A, 2015, 103, 3503-3515.	4.0	34
54	Shapeâ€memory bioresorbable terpolymer composite with antirestenotic drug. Journal of Applied Polymer Science, 2015, 132, .	2.6	25

#	Article	IF	CITATIONS
55	Self-assembled filomicelles prepared from polylactide/poly(ethylene glycol) block copolymers for anticancer drug delivery. International Journal of Pharmaceutics, 2015, 485, 357-364.	5.2	55
56	Thermal properties and morphology changes in degradation process of poly(L-lactide-co-glycolide) matrices with risperidone. Acta of Bioengineering and Biomechanics, 2015, 17, 11-20.	0.4	5
57	Double layer paclitaxel delivery systems based on bioresorbable terpolymer with shape memory properties. International Journal of Pharmaceutics, 2014, 465, 291-298.	5.2	19
58	Synthesis of biodegradable high molecular weight polycarbonates from 1,3â€ŧrimethylene carbonate and 2,2â€dimethyltrimethylene carbonate. Journal of Applied Polymer Science, 2014, 131, .	2.6	17
59	Structural transformation of terpolymer poly(L-lactide-glycolide-trimethylene carbonate) with shape memory effect during the degradation process. Polimery, 2014, 59, 562-568.	0.7	3
60	DSC, WAXD and SEM studies of biodegradation of poly(l-lactide–glycolide–trimethylene carbonate) shape memory terpolymer. Journal of Thermal Analysis and Calorimetry, 2013, 113, 413-417.	3.6	8
61	The Influence of Chain Microstructure of Biodegradable Copolyesters Obtained with Low-Toxic Zirconium Initiator to <i>In Vitro</i> Biocompatibility. BioMed Research International, 2013, 2013, 1-12.	1.9	20
62	Novel Poly(L-lactide-co- <i>ε</i> -caprolactone) Matrices Obtained with the Use of Zr[Acac] _{4} as Nontoxic Initiator for Long-Term Release of Immunosuppressive Drugs. BioMed Research International, 2013, 2013, 1-11.	1.9	10
63	Polyesters and polyestercarbonates for controlled drug delivery. Part I. Tailoring of the drug release. Polimery, 2013, 58, 654-662.	0.7	15
64	Polyesters and polyester carbonates for controlled drug delivery. Part II. Implantable systems. Polimery, 2013, 58, 858-863.	0.7	10
65	Enzyme-Catalyzed Degradation of Biodegradable Polymers Derived from Trimethylene Carbonate and Glycolide by Lipases from Candida Antarctica and Hog Pancreas. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 1355-1368.	3.5	9
66	The structure of novel polyurethanes containing synthetic poly[(<i>R,S</i>)â€3â€hydroxybutyrate]. Journal of Applied Polymer Science, 2012, 125, 4285-4291.	2.6	10
67	Tailoring the PLATMC chain microstructure for stable cyclosporine a release. Journal of Controlled Release, 2011, 152, e42-e44.	9.9	3
68	The polymerization mechanism of lactide initiated with zinc (II) acetylacetonate monohydrate. Polymer, 2011, 52, 5255-5261.	3.8	15
69	Controlled poly(l-lactide-co-trimethylene carbonate) delivery system of cyclosporine A and rapamycine – the effect of copolymer chain microstructure on drug release rate. International Journal of Pharmaceutics, 2011, 414, 203-209.	5.2	31
70	Polymerization mechanism of trimethylene carbonate carried out with zinc(II) acetylacetonate monohydrate. Journal of Polymer Science Part A, 2011, 49, 2504-2512.	2.3	21
71	NMR analysis of the chain microstructure of biodegradable terpolymers with shape memory properties. European Polymer Journal, 2011, 47, 1315-1327.	5.4	27
72	Designing bioresorbable polyester matrices for controlled doxorubicin release in glioma therapy. International Journal of Pharmaceutics, 2009, 382, 124-129.	5.2	13

#	Article	IF	CITATIONS
73	A novel hydroxy functionalized polyester obtained by ring opening copolymerization of <scp>L</scp> â€lactide with a pyrolysis product of cellulose. Journal of Polymer Science Part A, 2009, 47, 247-257.	2.3	18
74	Influence of chain microstructure on the hydrolytic degradation of copolymers from 1,3â€ŧrimethylene carbonate and <scp>L</scp> ″actide. Journal of Polymer Science Part A, 2009, 47, 3869-3879.	2.3	53
75	Characterization and optical properties of oligoazomethines with triphenylamine moieties exhibiting blue, blue-green and green light. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2009, 72, 1-10.	3.9	35
76	Degradation of copolymers obtained by ring-opening polymerization of glycolide and É>-caprolactone: A high resolution NMR and ESI-MS study. Polymer Degradation and Stability, 2008, 93, 990-999.	5.8	41
77	Comparative study of the hydrolytic degradation of glycolide/ <scp>L</scp> â€lactide/εâ€caprolactone terpolymers initiated by zirconium(IV) acetylacetonate or stannous octoate. Journal of Applied Polymer Science, 2008, 107, 3258-3266.	2.6	18
78	Hole Transport Triphenylamineâ^'Azomethine Conjugated System: Synthesis and Optical, Photoluminescence, and Electrochemical Properties. Macromolecules, 2008, 41, 6653-6663.	4.8	112
79	New Conjugated Azomethines Containing Triphenylamine Core —Characterization and Properties. High Performance Polymers, 2007, 19, 401-426.	1.8	33
80	Polyketanils: Preparation of π-Conjugated Polymer Bases from p-dibenzoylbenzene with Various Diamines. Protonation with DL-Camphor-10-sulfonic Acid. High Performance Polymers, 2007, 19, 78-96.	1.8	3
81	Degradation Process of Bioresorbable Copolyesters. Microstructure Investigation by NMR and ESIâ€MS. Macromolecular Symposia, 2007, 253, 40-46.	0.7	8
82	Shape Memory Behavior of Novel (<scp>l</scp> -Lactideâ^'Glycolideâ^'Trimethylene Carbonate) Terpolymers. Biomacromolecules, 2007, 8, 3661-3667.	5.4	86
83	Hydrolytic degradation of glycolide/L-lactide/É›-caprolactone terpolymers initiated by zirconium(IV) acetylacetonate. Journal of Applied Polymer Science, 2007, 103, 2451-2456.	2.6	9
84	Synthesis of biodegradable copolymers with low-toxicity zirconium compounds. V. Multiblock and random copolymers ofL-lactide with trimethylene carbonate obtained in copolymerizations initiated with zirconium(IV) acetylacetonate. Journal of Polymer Science Part A, 2006, 44, 3184-3201.	2.3	75
85	Polyketanils. Polymers protonated with Bronsted acid. Journal of Polymer Science Part A, 2006, 44, 5645-5660.	2.3	7
86	Synthesis of biodegradable copolymers with low-toxicity zirconium compounds. IV. Copolymerization of glycolide with trimethylene carbonate and 2,2-dimethyltrimethylene carbonate: Microstructure analysis of copolymer chains by high-resolution nuclear magnetic resonance spectroscopy. Journal of Polymer Science Part A, 2006, 44, 98-114.	2.3	24
87	Application of the lithium and magnesium initiators for the synthesis of glycolide, lactide, and Ϊμ-caprolactone copolymers biocompatible with brain tissue. Journal of Biomedical Materials Research - Part A, 2006, 79A, 865-873.	4.0	26
88	Highly selective isomerization of N-allylamides catalyzed by ruthenium and rhodium complexes. Journal of Molecular Catalysis A, 2005, 225, 91-101.	4.8	33
89	Structureâ^ Property Relationships of Copolymers Obtained by Ring-Opening Polymerization of Glycolide and Îμ-Caprolactone. Part 1. Synthesis and Characterization. Biomacromolecules, 2005, 6, 483-488.	5.4	99
90	Characterization and Photoluminescence Study of Blue and Green Emitting Polyketanils and Their Blends. Macromolecules, 2005, 38, 4384-4392.	4.8	25

#	Article	IF	CITATIONS
91	Structureâ^Property Relationships of Copolymers Obtained by Ring-Opening Polymerization of Glycolide and ε-Caprolactone. Part 2. Influence of Composition and Chain Microstructure on the Hydrolytic Degradation. Biomacromolecules, 2005, 6, 489-497.	5.4	76
92	Highly selective isomerization of N-allylamides and N-allylamines. Tetrahedron Letters, 2004, 45, 5257-5261.	1.4	63
93	Decomposition of vinyl ethers by alkalide Kâ^', K+(15-crown-5)2 via organopotassium intermediates. Journal of Organometallic Chemistry, 2004, 689, 1580-1585.	1.8	7
94	Electron-transfer reduction of selected alcohols with alkalide Kâ^', K+(15-crown-5)2 via organometallic intermediates. Journal of Organometallic Chemistry, 2004, 689, 2361-2367.	1.8	2
95	Molecular design of new π-conjugated poly(ketanil)s with tunable spectroscopic properties. New Journal of Chemistry, 2004, 28, 1554-1561.	2.8	12
96	Synthesis, characterization and optical properties of oligoketanils containing carbon–carbon double bond in the main chain. Synthetic Metals, 2004, 143, 331-339.	3.9	29
97	Effect of gamma-irradiation on cladribine and cladribine-containing biodegradable copolymers. Journal of Controlled Release, 2003, 89, 447-456.	9.9	10
98	Synthesis and characterisation of polyketanils with ether linkages. Macromolecular Symposia, 2003, 199, 455-466.	0.7	4
99	Synthesis of biodegradable glycolide/l-lactide copolymers using iron compounds as initiators. Polymer, 2002, 43, 2595-2601.	3.8	69
100	In vitro release of cytotoxic nucleoside analogs from lactide-caprolactone and lactide-glycolide copolymers Acta Biochimica Polonica, 2002, 49, 205-210.	0.5	7
101	Synthesis of Biodegradable Copolymers with the Use of Low Toxic Zirconium Compounds. 1. Copolymerization of Glycolide withl-Lactide Initiated by Zr(Acac)4. Macromolecules, 2001, 34, 5090-5098.	4.8	140
102	NMR investigation of biodegradable polyesters for medical applications. Macromolecular Symposia, 2001, 175, 19-32.	0.7	13
103	Application of zirconium (IV) acetylacetonate to the copolymerization of glycolide with ε-caprolactone and lactide. Polymer Bulletin, 1999, 42, 131-139.	3.3	43
104	Copolymerization of glycolide andε-caprolactone, 1. Analysis of the copolymer microstructure by means of1H and13C NMR spectroscopy. Macromolecular Chemistry and Physics, 1999, 200, 903-910.	2.2	51
105	Copolymerization of glycolide andε-caprolactone, 2. Random copolymerization in the presence of tin octoate. Macromolecular Chemistry and Physics, 1999, 200, 911-916.	2.2	45
106	Application of Calcium Acetylacetonate to the Polymerization of Glycolide and Copolymerization of Glycolide with ε-Caprolactone andl-Lactide. Macromolecules, 1999, 32, 4735-4737.	4.8	115
107	Controlled Release of 17β-Estradiol from d,l-Lactide/ε-Caprolactone Copolymers. Journal of Bioactive and Compatible Polymers, 1996, 11, 110-121.	2.1	10
108	Coordination polymerization of lactides, 5. Influence of lactide structure on the transesterification processes in the copolymerization with É>-caprolactone. Macromolecular Chemistry and Physics, 1996, 197, 3251-3258.	2.2	60

#	Article	IF	CITATIONS
109	Title is missing!. Die Makromolekulare Chemie, 1993, 194, 907-912.	1.1	111
110	Title is missing!. Die Makromolekulare Chemie, 1993, 194, 913-925.	1.1	130
111	Carbon-13 NMR Studies of Alpha-Elastin. Upsala Journal of Medical Sciences, 1993, 98, 53-63.	0.9	4
112	Title is missing!. Die Makromolekulare Chemie, 1991, 192, 1777-1787.	1.1	114
113	Coordination polymerization of lactides, 1. Structure determination of obtained polymers. Die Makromolekulare Chemie, 1990, 191, 2287-2296.	1.1	180
114	Anionic polymerization of 4-methyl-2-oxetanone. Die Makromolekulare Chemie, 1986, 187, 1651-1656.	1.1	43
115	Title is missing!. Die Makromolekulare Chemie, 1986, 187, 2215-2221.	1.1	13
116	Polymerization of propylene oxide using chiral, aluminium containing initiators. Die Makromolekulare Chemie Rapid Communications, 1981, 2, 663-666.	1.1	11