David N Cooper

List of Publications by Citations

Source: https://exaly.com/author-pdf/6675359/david-n-cooper-publications-by-citations.pdf

Version: 2024-04-24

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

63,491 248 91 477 h-index g-index citations papers 75,694 8.4 7.42 523 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
477	A global reference for human genetic variation. <i>Nature</i> , 2015 , 526, 68-74	50.4	8599
476	Analysis of protein-coding genetic variation in 60,706 humans. <i>Nature</i> , 2016 , 536, 285-91	50.4	6940
475	A map of human genome variation from population-scale sequencing. <i>Nature</i> , 2010 , 467, 1061-73	50.4	6142
474	An integrated map of genetic variation from 1,092 human genomes. <i>Nature</i> , 2012 , 491, 56-65	50.4	6049
473	MutationTaster2: mutation prediction for the deep-sequencing age. <i>Nature Methods</i> , 2014 , 11, 361-2	21.6	2455
472	Genome sequence of the Brown Norway rat yields insights into mammalian evolution. <i>Nature</i> , 2004 , 428, 493-521	50.4	1689
471	Human Gene Mutation Database (HGMD): 2003 update. Human Mutation, 2003, 21, 577-81	4.7	1206
470	Evolutionary and biomedical insights from the rhesus macaque genome. <i>Science</i> , 2007 , 316, 222-34	33.3	1072
469	The Human Gene Mutation Database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. <i>Human Genetics</i> , 2014 , 133, 1-9	6.3	975
468	The mutational spectrum of single base-pair substitutions in mRNA splice junctions of human genes: causes and consequences. <i>Human Genetics</i> , 1992 , 90, 41-54	6.3	946
467	A systematic survey of loss-of-function variants in human protein-coding genes. <i>Science</i> , 2012 , 335, 823	-8 3.3	880
466	The CpG dinucleotide and human genetic disease. <i>Human Genetics</i> , 1988 , 78, 151-5	6.3	837
465	Mapping copy number variation by population-scale genome sequencing. <i>Nature</i> , 2011 , 470, 59-65	50.4	833
464	The Human Gene Mutation Database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. <i>Human Genetics</i> , 2017 , 136, 665-677	6.3	775
463	Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. <i>Human Mutation</i> , 2013 , 34, 57-65	4.7	723
462	The Human Gene Mutation Database: 2008 update. <i>Genome Medicine</i> , 2009 , 1, 13	14.4	647
461	Automated inference of molecular mechanisms of disease from amino acid substitutions. <i>Bioinformatics</i> , 2009 , 25, 2744-50	7.2	580

460	Insights into hominid evolution from the gorilla genome sequence. <i>Nature</i> , 2012 , 483, 169-75	50.4	517	
459	The yak genome and adaptation to life at high altitude. <i>Nature Genetics</i> , 2012 , 44, 946-9	36.3	472	
458	Gene conversion: mechanisms, evolution and human disease. <i>Nature Reviews Genetics</i> , 2007 , 8, 762-75	30.1	469	
457	Demographic history and rare allele sharing among human populations. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 11983-8	11.5	455	
456	M-CAP eliminates a majority of variants of uncertain significance in clinical exomes at high sensitivity. <i>Nature Genetics</i> , 2016 , 48, 1581-1586	36.3	423	
455	Variation in genome-wide mutation rates within and between human families. <i>Nature Genetics</i> , 2011 , 43, 712-4	36.3	404	
454	Where genotype is not predictive of phenotype: towards an understanding of the molecular basis of reduced penetrance in human inherited disease. <i>Human Genetics</i> , 2013 , 132, 1077-130	6.3	384	
453	Gene deletions causing human genetic disease: mechanisms of mutagenesis and the role of the local DNA sequence environment. <i>Human Genetics</i> , 1991 , 86, 425-41	6.3	357	
452	An integrative approach to predicting the functional effects of non-coding and coding sequence variation. <i>Bioinformatics</i> , 2015 , 31, 1536-43	7.2	340	
451	The mutational spectrum of single base-pair substitutions causing human genetic disease: patterns and predictions. <i>Human Genetics</i> , 1990 , 85, 55-74	6.3	304	
450	Single base-pair substitutions in exon-intron junctions of human genes: nature, distribution, and consequences for mRNA splicing. <i>Human Mutation</i> , 2007 , 28, 150-8	4.7	277	
449	Cytosine methylation and the fate of CpG dinucleotides in vertebrate genomes. <i>Human Genetics</i> , 1989 , 83, 181-8	6.3	269	
448	An estimate of unique DNA sequence heterozygosity in the human genome. <i>Human Genetics</i> , 1985 , 69, 201-5	6.3	269	
447	Neighboring-nucleotide effects on the rates of germ-line single-base-pair substitution in human genes. <i>American Journal of Human Genetics</i> , 1998 , 63, 474-88	11	256	
446	Identifying Mendelian disease genes with the variant effect scoring tool. <i>BMC Genomics</i> , 2013 , 14 Suppl 3, S3	4.5	240	
445	A meta-analysis of nonsense mutations causing human genetic disease. <i>Human Mutation</i> , 2008 , 29, 103	7 ₄ 47	238	
444	Splicing factor SFRS1 recognizes a functionally diverse landscape of RNA transcripts. <i>Genome Research</i> , 2009 , 19, 381-94	9.7	230	
443	Deleterious- and disease-allele prevalence in healthy individuals: insights from current predictions, mutation databases, and population-scale resequencing. <i>American Journal of Human Genetics</i> , 2012 , 91, 1022-32	11	221	

442	Genome sequencing and comparison of two nonhuman primate animal models, the cynomolgus and Chinese rhesus macaques. <i>Nature Biotechnology</i> , 2011 , 29, 1019-23	44.5	219
441	The human gene mutation database. <i>Trends in Genetics</i> , 1997 , 13, 121-2	8.5	219
440	Translocation and gross deletion breakpoints in human inherited disease and cancer I: Nucleotide composition and recombination-associated motifs. <i>Human Mutation</i> , 2003 , 22, 229-44	4.7	203
439	Long-read sequence analysis of the MECP2 gene in Rett syndrome patients: correlation of disease severity with mutation type and location. <i>Human Molecular Genetics</i> , 2000 , 9, 1119-29	5.6	196
438	Mountain gorilla genomes reveal the impact of long-term population decline and inbreeding. <i>Science</i> , 2015 , 348, 242-245	33.3	195
437	Human gene mutation database-a biomedical information and research resource. <i>Human Mutation</i> , 2000 , 15, 45-51	4.7	187
436	Gene expression across mammalian organ development. <i>Nature</i> , 2019 , 571, 505-509	50.4	179
435	The evaluation of tools used to predict the impact of missense variants is hindered by two types of circularity. <i>Human Mutation</i> , 2015 , 36, 513-23	4.7	178
434	Eukaryotic DNA methylation. <i>Human Genetics</i> , 1983 , 64, 315-33	6.3	178
433	A systematic analysis of LINE-1 endonuclease-dependent retrotranspositional events causing human genetic disease. <i>Human Genetics</i> , 2005 , 117, 411-27	6.3	173
432	The mutation significance cutoff: gene-level thresholds for variant predictions. <i>Nature Methods</i> , 2016 , 13, 109-10	21.6	171
431	Human genomics. Effect of predicted protein-truncating genetic variants on the human transcriptome. <i>Science</i> , 2015 , 348, 666-9	33.3	170
430	Gains of glycosylation comprise an unexpectedly large group of pathogenic mutations. <i>Nature Genetics</i> , 2005 , 37, 692-700	36.3	168
429	The Human Gene Mutation Database (HGMD) and its exploitation in the fields of personalized genomics and molecular evolution. <i>Current Protocols in Bioinformatics</i> , 2012 , Chapter 1, Unit1.13	24.2	162
428	Breakpoints of gross deletions coincide with non-B DNA conformations. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 14162-7	11.5	162
427	Unmethylated domains in vertebrate DNA. <i>Nucleic Acids Research</i> , 1983 , 11, 647-58	20.1	162
426	The functional spectrum of low-frequency coding variation. <i>Genome Biology</i> , 2011 , 12, R84	18.3	161
425	Predicting the functional consequences of cancer-associated amino acid substitutions. <i>Bioinformatics</i> , 2013 , 29, 1504-10	7.2	154

424	The human gene mutation database. <i>Nucleic Acids Research</i> , 1998 , 26, 285-7	20.1	153
423	The human gene damage index as a gene-level approach to prioritizing exome variants. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 13615-20	11.5	152
422	Gross deletions of the neurofibromatosis type 1 (NF1) gene are predominantly of maternal origin and commonly associated with a learning disability, dysmorphic features and developmental delay. <i>Human Genetics</i> , 1998 , 102, 591-7	6.3	151
421	Functional intronic polymorphisms: Buried treasure awaiting discovery within our genes. <i>Human Genomics</i> , 2010 , 4, 284-8	6.8	149
420	FATHMM-XF: accurate prediction of pathogenic point mutations via extended features. <i>Bioinformatics</i> , 2018 , 34, 511-513	7.2	147
419	Early onset seizures and Rett-like features associated with mutations in CDKL5. <i>European Journal of Human Genetics</i> , 2005 , 13, 1113-20	5.3	143
418	DNA restriction fragment length polymorphisms and heterozygosity in the human genome. <i>Human Genetics</i> , 1984 , 66, 1-16	6.3	143
417	Genes, mutations, and human inherited disease at the dawn of the age of personalized genomics. <i>Human Mutation</i> , 2010 , 31, 631-55	4.7	138
416	The molecular genetics of growth hormone deficiency. <i>Human Genetics</i> , 1998 , 103, 255-72	6.3	135
415	A systematic analysis of disease-associated variants in the 3' regulatory regions of human protein-coding genes I: general principles and overview. <i>Human Genetics</i> , 2006 , 120, 1-21	6.3	131
414	The NF1 somatic mutational landscape in sporadic human cancers. <i>Human Genomics</i> , 2017 , 11, 13	6.8	130
413	Clinical characterisation of 29 neurofibromatosis type-1 patients with molecularly ascertained 1.4 Mb type-1 NF1 deletions. <i>Journal of Medical Genetics</i> , 2010 , 47, 623-30	5.8	128
412	Meta-analysis of gross insertions causing human genetic disease: novel mutational mechanisms and the role of replication slippage. <i>Human Mutation</i> , 2005 , 25, 207-21	4.7	128
411	Microdeletions and microinsertions causing human genetic disease: common mechanisms of mutagenesis and the role of local DNA sequence complexity. <i>Human Mutation</i> , 2005 , 26, 205-13	4.7	128
410	Exome sequencing: dual role as a discovery and diagnostic tool. <i>Annals of Neurology</i> , 2012 , 71, 5-14	9.4	126
409	Emerging genotype-phenotype relationships in patients with large NF1 deletions. <i>Human Genetics</i> , 2017 , 136, 349-376	6.3	125
408	Loss of exon identity is a common mechanism of human inherited disease. <i>Genome Research</i> , 2011 , 21, 1563-71	9.7	125
407	Precursor-product relationship between vitellogenin and the yolk proteins as derived from the complete sequence of a Xenopus vitellogenin gene. <i>Nucleic Acids Research</i> , 1987 , 15, 4737-60	20.1	122

406	A systematic analysis of disease-associated variants in the 3' regulatory regions of human protein-coding genes II: the importance of mRNA secondary structure in assessing the functionality of 3' UTR variants. <i>Human Genetics</i> , 2006 , 120, 301-33	6.3	119
405	Genomic rearrangements in inherited disease and cancer. <i>Seminars in Cancer Biology</i> , 2010 , 20, 222-33	12.7	118
404	The Human Gene Mutation Database (HGMD): optimizing its use in a clinical diagnostic or research setting. <i>Human Genetics</i> , 2020 , 139, 1197-1207	6.3	108
403	Human gene mutations affecting RNA processing and translation. <i>Annals of Medicine</i> , 1993 , 25, 11-7	1.5	108
402	Ranking non-synonymous single nucleotide polymorphisms based on disease concepts. <i>Human Genomics</i> , 2014 , 8, 11	6.8	105
401	MutPred Splice: machine learning-based prediction of exonic variants that disrupt splicing. <i>Genome Biology</i> , 2014 , 15, R19	18.3	102
400	Evolutionary conservation and selection of human disease gene orthologs in the rat and mouse genomes. <i>Genome Biology</i> , 2004 , 5, R47	18.3	102
399	Genomic rearrangements in the CFTR gene: extensive allelic heterogeneity and diverse mutational mechanisms. <i>Human Mutation</i> , 2004 , 23, 343-57	4.7	101
398	CRAVAT: cancer-related analysis of variants toolkit. <i>Bioinformatics</i> , 2013 , 29, 647-8	7.2	98
397	Meta-analysis of indels causing human genetic disease: mechanisms of mutagenesis and the role of local DNA sequence complexity. <i>Human Mutation</i> , 2003 , 21, 28-44	4.7	98
396	Human genetic disease caused by de novo mitochondrial-nuclear DNA transfer. <i>Human Genetics</i> , 2003 , 112, 303-9	6.3	96
395	Neurofibromatosis type 1-associated tumours: their somatic mutational spectrum and pathogenesis. <i>Human Genomics</i> , 2011 , 5, 623-90	6.8	94
394	Methylation-mediated deamination of 5-methylcytosine appears to give rise to mutations causing human inherited disease in CpNpG trinucleotides, as well as in CpG dinucleotides. <i>Human Genomics</i> , 2010 , 4, 406-10	6.8	94
393	Human growth hormone 1 (GH1) gene expression: complex haplotype-dependent influence of polymorphic variation in the proximal promoter and locus control region. <i>Human Mutation</i> , 2003 , 21, 408-23	4.7	93
392	Novel mutations of the growth hormone 1 (GH1) gene disclosed by modulation of the clinical selection criteria for individuals with short stature. <i>Human Mutation</i> , 2003 , 21, 424-40	4.7	91
391	Translocation and gross deletion breakpoints in human inherited disease and cancer II: Potential involvement of repetitive sequence elements in secondary structure formation between DNA ends. <i>Human Mutation</i> , 2003 , 22, 245-51	4.7	91
390	Mechanisms of insertional mutagenesis in human genes causing genetic disease. <i>Human Genetics</i> , 1991 , 87, 409-15	6.3	91
389	DNA polymorphism and the study of disease associations. <i>Human Genetics</i> , 1988 , 78, 299-312	6.3	91

388	Mosaic type-1 NF1 microdeletions as a cause of both generalized and segmental neurofibromatosis type-1 (NF1). <i>Human Mutation</i> , 2011 , 32, 213-9	4.7	89
387	Characterization of the somatic mutational spectrum of the neurofibromatosis type 1 (NF1) gene in neurofibromatosis patients with benign and malignant tumors. <i>Human Mutation</i> , 2004 , 23, 134-46	4.7	89
386	On the sequence-directed nature of human gene mutation: the role of genomic architecture and the local DNA sequence environment in mediating gene mutations underlying human inherited disease. <i>Human Mutation</i> , 2011 , 32, 1075-99	4.7	88
385	Complex gene rearrangements caused by serial replication slippage. <i>Human Mutation</i> , 2005 , 26, 125-34	4.7	85
384	Inferring the molecular and phenotypic impact of amino acid variants with MutPred2. <i>Nature Communications</i> , 2020 , 11, 5918	17.4	84
383	Analysis of protein-coding genetic variation in 60,706 humans		81
382	Abundance and length of simple repeats in vertebrate genomes are determined by their structural properties. <i>Genome Research</i> , 2008 , 18, 1545-53	9.7	79
381	Haemophilia A: database of nucleotide substitutions, deletions, insertions and rearrangements of the factor VIII gene, second edition. <i>Nucleic Acids Research</i> , 1994 , 22, 3511-33	20.1	79
380	MutPred2: inferring the molecular and phenotypic impact of amino acid variants		79
379	Understanding the recent evolution of the human genome: insights from human-chimpanzee genome comparisons. <i>Human Mutation</i> , 2007 , 28, 99-130	4.7	78
378	Human Gene Mutation Database: towards a comprehensive central mutation database. <i>Journal of Medical Genetics</i> , 2008 , 45, 124-6	5.8	77
377	Translocation and deletion breakpoints in cancer genomes are associated with potential non-B DNA-forming sequences. <i>Nucleic Acids Research</i> , 2016 , 44, 5673-88	20.1	77
376	Uganda Genome Resource Enables Insights into Population History and Genomic Discovery in Africa. <i>Cell</i> , 2019 , 179, 984-1002.e36	56.2	76
375	Identification and characterization of 15 novel GALC gene mutations causing Krabbe disease. <i>Human Mutation</i> , 2010 , 31, E1894-914	4.7	74
374	Mutational and functional analysis of the neurofibromatosis type 1 (NF1) gene. <i>Human Genetics</i> , 1997 , 99, 88-92	6.3	73
373	Human type I hair keratin pseudogene phihHaA has functional orthologs in the chimpanzee and gorilla: evidence for recent inactivation of the human gene after the Pan-Homo divergence. <i>Human Genetics</i> , 2001 , 108, 37-42	6.3	71
372	Gross genomic rearrangements involving deletions in the CFTR gene: characterization of six new events from a large cohort of hitherto unidentified cystic fibrosis chromosomes and meta-analysis of the underlying mechanisms. <i>European Journal of Human Genetics</i> , 2006 , 14, 567-76	5.3	70
371	The molecular pathogenesis of schwannomatosis, a paradigm for the co-involvement of multiple tumour suppressor genes in tumorigenesis. <i>Human Genetics</i> , 2017 , 136, 129-148	6.3	69

370	Report of the DNA committee and catalogues of cloned and mapped genes, markers formatted for PCR and DNA polymorphisms. <i>Cytogenetic and Genome Research</i> , 1991 , 58, 1190-1832	1.9	69
369	A new paradigm emerges from the study of de novo mutations in the context of neurodevelopmental disease. <i>Molecular Psychiatry</i> , 2013 , 18, 141-53	15.1	68
368	Restriction fragment length polymorphisms at the human parathyroid hormone gene locus. <i>Human Genetics</i> , 1984 , 67, 428-31	6.3	68
367	Inherited Factor VII Deficiency: Molecular Genetics and Pathophysiology. <i>Thrombosis and Haemostasis</i> , 1997 , 78, 151-160	7	68
366	Inherited Factor X Deficiency: Molecular Genetics and Pathophysiology. <i>Thrombosis and Haemostasis</i> , 1997 , 78, 161-172	7	68
365	Diagnostic exome sequencing to elucidate the genetic basis of likely recessive disorders in consanguineous families. <i>Human Mutation</i> , 2014 , 35, 1203-10	4.7	67
364	A conservative assessment of the major genetic causes of idiopathic chronic pancreatitis: data from a comprehensive analysis of PRSS1, SPINK1, CTRC and CFTR genes in 253 young French patients. <i>PLoS ONE</i> , 2013 , 8, e73522	3.7	66
363	Assessing the Pathogenicity of Insertion and Deletion Variants with the Variant Effect Scoring Tool (VEST-Indel). <i>Human Mutation</i> , 2016 , 37, 28-35	4.7	65
362	Human genetics and genomics a decade after the release of the draft sequence of the human genome. <i>Human Genomics</i> , 2011 , 5, 577-622	6.8	65
361	Evaluation of denaturing high performance liquid chromatography (DHPLC) for the mutational analysis of the neurofibromatosis type 1 (NF1) gene. <i>Human Genetics</i> , 2001 , 109, 487-97	6.3	64
360	GWAS: heritability missing in action?. European Journal of Human Genetics, 2010, 18, 859-61	5.3	62
359	Complex patterns of copy number variation at sites of segmental duplications: an important category of structural variation in the human genome. <i>Human Genetics</i> , 2006 , 120, 270-84	6.3	62
358	Diagnosis of genetic disease using recombinant DNA. <i>Human Genetics</i> , 1986 , 73, 1-11	6.3	61
357	Mosaicism in sporadic neurofibromatosis type 1: variations on a theme common to other hereditary cancer syndromes?. <i>Journal of Medical Genetics</i> , 2008 , 45, 622-31	5.8	60
356	Interpreting secondary cardiac disease variants in an exome cohort. <i>Circulation: Cardiovascular Genetics</i> , 2013 , 6, 337-46		59
355	Molecular mechanisms of chromosomal rearrangement during primate evolution. <i>Chromosome Research</i> , 2008 , 16, 41-56	4.4	59
354	Gonosomal mosaicism for a nonsense mutation (R1947X) in the NF1 gene in segmental neurofibromatosis type 1. <i>Journal of Investigative Dermatology</i> , 2005 , 125, 463-6	4.3	59
353	Intrachromosomal serial replication slippage in trans gives rise to diverse genomic rearrangements involving inversions. <i>Human Mutation</i> , 2005 , 26, 362-73	4.7	58

(1985-2006)

352	Gross rearrangements of the MECP2 gene are found in both classical and atypical Rett syndrome patients. <i>Journal of Medical Genetics</i> , 2006 , 43, 451-6	5.8	58	
351	Localization of a human heat-shock HSP 70 gene sequence to chromosome 6 and detection of two other loci by somatic-cell hybrid and restriction fragment length polymorphism analysis. <i>Human Genetics</i> , 1987 , 75, 123-8	6.3	58	
350	Gain-of-glycosylation mutations. Current Opinion in Genetics and Development, 2007, 17, 245-51	4.9	57	
349	MuPIT interactive: webserver for mapping variant positions to annotated, interactive 3D structures. <i>Human Genetics</i> , 2013 , 132, 1235-43	6.3	56	
348	IDUA mutational profiling of a cohort of 102 European patients with mucopolysaccharidosis type I: identification and characterization of 35 novel &-iduronidase (IDUA) alleles. <i>Human Mutation</i> , 2011 , 32, E2189-210	4.7	56	
347	Gene conversion causing human inherited disease: evidence for involvement of non-B-DNA-forming sequences and recombination-promoting motifs in DNA breakage and repair. <i>Human Mutation</i> , 2009 , 30, 1189-98	4.7	56	
346	In silico functional profiling of human disease-associated and polymorphic amino acid substitutions. <i>Human Mutation</i> , 2010 , 31, 335-46	4.7	55	
345	Microattribution and nanopublication as means to incentivize the placement of human genome variation data into the public domain. <i>Human Mutation</i> , 2012 , 33, 1503-12	4.7	54	
344	Type 2 NF1 deletions are highly unusual by virtue of the absence of nonallelic homologous recombination hotspots and an apparent preference for female mitotic recombination. <i>American Journal of Human Genetics</i> , 2007 , 81, 1201-20	11	54	
343	Using exome data to identify malignant hyperthermia susceptibility mutations. <i>Anesthesiology</i> , 2013 , 119, 1043-53	4.3	53	
342	DDIG-in: discriminating between disease-associated and neutral non-frameshifting micro-indels. <i>Genome Biology</i> , 2013 , 14, R23	18.3	52	
341	Long homopurine*homopyrimidine sequences are characteristic of genes expressed in brain and the pseudoautosomal region. <i>Nucleic Acids Research</i> , 2006 , 34, 2663-75	20.1	52	
340	Haemophilia A: database of nucleotide substitutions, deletions, insertions and rearrangements of the factor VIII gene, second edition. <i>Nucleic Acids Research</i> , 1994 , 22, 4851-68	20.1	52	
339	Somatic spectrum of cancer-associated single basepair substitutions in the TP53 gene is determined mainly by endogenous mechanisms of mutation and by selection. <i>Human Mutation</i> , 1995 , 5, 48-57	4.7	52	
338	mutation3D: Cancer Gene Prediction Through Atomic Clustering of Coding Variants in the Structural Proteome. <i>Human Mutation</i> , 2016 , 37, 447-56	4.7	51	
337	Disease-causing mutations in the human genome. <i>European Journal of Pediatrics</i> , 2000 , 159 Suppl 3, S1	73 ₄ 8	50	
336	Estimating the efficacy and efficiency of cascade genetic screening. <i>American Journal of Human Genetics</i> , 2001 , 69, 361-70	11	49	
335	DNA methylation and CpG suppression. <i>Cell Differentiation</i> , 1985 , 17, 199-205		48	

334	SPINK1, PRSS1, CTRC, and CFTR Genotypes Influence Disease Onset and Clinical Outcomes in Chronic Pancreatitis. <i>Clinical and Translational Gastroenterology</i> , 2018 , 9, 204	4.2	48
333	Individualized iterative phenotyping for genome-wide analysis of loss-of-function mutations. <i>American Journal of Human Genetics</i> , 2015 , 96, 913-25	11	47
332	Gene synteny comparisons between different vertebrates provide new insights into breakage and fusion events during mammalian karyotype evolution. <i>BMC Evolutionary Biology</i> , 2009 , 9, 84	3	46
331	Closely spaced multiple mutations as potential signatures of transient hypermutability in human genes. <i>Human Mutation</i> , 2009 , 30, 1435-48	4.7	45
330	Report of the DNA committee and catalogues of cloned and mapped genes and DNA polymorphisms. <i>Cytogenetic and Genome Research</i> , 1990 , 55, 457-778	1.9	45
329	DDIG-in: detecting disease-causing genetic variations due to frameshifting indels and nonsense mutations employing sequence and structural properties at nucleotide and protein levels. <i>Bioinformatics</i> , 2015 , 31, 1599-606	7.2	44
328	SVA retrotransposon insertion-associated deletion represents a novel mutational mechanism underlying large genomic copy number changes with non-recurrent breakpoints. <i>Genome Biology</i> , 2014 , 15, R80	18.3	44
327	Breakpoint analysis of the pericentric inversion distinguishing human chromosome 4 from the homologous chromosome in the chimpanzee (Pan troglodytes). <i>Human Mutation</i> , 2005 , 25, 45-55	4.7	44
326	Molecular analysis of the genotype-phenotype relationship in factor X deficiency. <i>Human Genetics</i> , 2000 , 106, 249-57	6.3	44
325	A novel dysfunctional growth hormone variant (Ile179Met) exhibits a decreased ability to activate the extracellular signal-regulated kinase pathway. <i>Journal of Clinical Endocrinology and Metabolism</i> , 2004 , 89, 1068-75	5.6	43
324	The effect of replication errors on the mismatch analysis of PCR-amplified DNA. <i>Nucleic Acids Research</i> , 1990 , 18, 973-8	20.1	43
323	The Human Gene Mutation Database (HGMD) and its exploitation in the study of mutational mechanisms. <i>Current Protocols in Bioinformatics</i> , 2006 , Chapter 1, Unit 1.13	24.2	42
322	Key challenges for next-generation pharmacogenomics: Science & Society series on Science and Drugs. <i>EMBO Reports</i> , 2014 , 15, 472-6	6.5	41
321	Genotype-phenotype associations in neurofibromatosis type 1 (NF1): an increased risk of tumor complications in patients with NF1 splice-site mutations?. <i>Human Genomics</i> , 2012 , 6, 12	6.8	41
320	A critical view of the general public's awareness and physicians' opinion of the trends and potential pitfalls of genetic testing in Greece. <i>Personalized Medicine</i> , 2011 , 8, 551-561	2.2	41
319	Characterisation of a functional intronic polymorphism in the human growth hormone (GH1) gene. <i>Human Genomics</i> , 2010 , 4, 289-301	6.8	41
318	Structural divergence between the human and chimpanzee genomes. <i>Human Genetics</i> , 2007 , 120, 759-78	8 6.3	41
317	Microarray-based copy number analysis of neurofibromatosis type-1 (NF1)-associated malignant peripheral nerve sheath tumors reveals a role for Rho-GTPase pathway genes in NF1 tumorigenesis. <i>Human Mutation</i> , 2012 , 33, 763-76	4.7	40

316	Assessing radiation-associated mutational risk to the germline: repetitive DNA sequences as mutational targets and biomarkers. <i>Radiation Research</i> , 2006 , 165, 249-68	3.1	40	
315	No Association Between CEL-HYB Hybrid Allele and Chronic Pancreatitis in Asian Populations. <i>Gastroenterology</i> , 2016 , 150, 1558-1560.e5	13.3	40	
314	Genetic tests obtainable through pharmacies: the good, the bad, and the ugly. <i>Human Genomics</i> , 2013 , 7, 17	6.8	38	
313	Critical appraisal of the views of healthcare professionals with respect to pharmacogenomics and personalized medicine in Greece. <i>Personalized Medicine</i> , 2014 , 11, 15-26	2.2	38	
312	Independent intrachromosomal recombination events underlie the pericentric inversions of chimpanzee and gorilla chromosomes homologous to human chromosome 16. <i>Genome Research</i> , 2005 , 15, 1232-42	9.7	38	
311	A novel third type of recurrent NF1 microdeletion mediated by nonallelic homologous recombination between LRRC37B-containing low-copy repeats in 17q11.2. <i>Human Mutation</i> , 2010 , 31, 742-51	4.7	37	
310	LINE-1 endonuclease-dependent retrotranspositional events causing human genetic disease: mutation detection bias and multiple mechanisms of target gene disruption. <i>Journal of Biomedicine and Biotechnology</i> , 2006 , 2006, 56182		36	
309	A massively parallel pipeline to clone DNA variants and examine molecular phenotypes of human disease mutations. <i>PLoS Genetics</i> , 2014 , 10, e1004819	6	35	
308	Molecular characterization of 22 novel UDP-N-acetylglucosamine-1-phosphate transferase alpha- and beta-subunit (GNPTAB) gene mutations causing mucolipidosis types IIalpha/beta and IIIalpha/beta in 46 patients. <i>Human Mutation</i> , 2009 , 30, E956-73	4.7	35	
307	Ectopic (illegitimate) transcription: new possibilities for the analysis and diagnosis of human genetic disease. <i>Annals of Medicine</i> , 1994 , 26, 9-14	1.5	35	
306	Chicken lens delta-crystallin gene expression and methylation in several non-lens tissues. <i>Nucleic Acids Research</i> , 1983 , 11, 2513-27	20.1	35	
305	Mechanisms of loss of heterozygosity in neurofibromatosis type 1-associated plexiform neurofibromas. <i>Journal of Investigative Dermatology</i> , 2009 , 129, 615-21	4.3	34	
304	Identification of large-scale human-specific copy number differences by inter-species array comparative genomic hybridization. <i>Human Genetics</i> , 2006 , 119, 185-98	6.3	34	
303	Assessing the relative importance of the biophysical properties of amino acid substitutions associated with human genetic disease. <i>Human Mutation</i> , 2002 , 20, 98-109	4.7	34	
302	Evidence for Cultured Human Vascular Smooth Muscle Cell Heterogeneity: Isolation of Clonal Cells and Study of their Growth Characteristics. <i>Thrombosis and Haemostasis</i> , 1996 , 75, 854-858	7	34	
301	Deciphering next-generation pharmacogenomics: an information technology perspective. <i>Open Biology</i> , 2014 , 4,	7	33	
300	Evolution of the proximal promoter region of the mammalian growth hormone gene. <i>Gene</i> , 1999 , 237, 143-51	3.8	33	
299	Mechanisms of base substitution mutagenesis in cancer genomes. <i>Genes</i> , 2014 , 5, 108-46	4.2	32	

298	Gene discovery in familial cancer syndromes by exome sequencing: prospects for the elucidation of familial colorectal cancer type X. <i>Modern Pathology</i> , 2012 , 25, 1055-68	9.8	31
297	Down's syndrome and the molecular biology of chromosome 21. <i>Progress in Neurobiology</i> , 1988 , 30, 507	-30 9	31
296	Meiotic recombination favors the spreading of deleterious mutations in human populations. <i>Human Mutation</i> , 2011 , 32, 198-206	4.7	30
295	Single base-pair substitutions at the translation initiation sites of human genes as a cause of inherited disease. <i>Human Mutation</i> , 2011 , 32, 1137-43	4.7	30
294	Molecular genetic analysis of severe protein C deficiency. <i>Human Genetics</i> , 2000 , 106, 646-53	6.3	30
293	From the periphery to centre stage: de novo single nucleotide variants play a key role in human genetic disease. <i>Journal of Medical Genetics</i> , 2013 , 50, 203-11	5.8	29
292	Exome versus transcriptome sequencing in identifying coding region variants. <i>Expert Review of Molecular Diagnostics</i> , 2012 , 12, 241-51	3.8	29
291	Complete ascertainment of intragenic copy number mutations (CNMs) in the CFTR gene and its implications for CNM formation at other autosomal loci. <i>Human Mutation</i> , 2010 , 31, 421-8	4.7	29
290	Hypermethylation of the neurofibromatosis type 1 (NF1) gene promoter is not a common event in the inactivation of the NF1 gene in NF1-specific tumours. <i>Human Genetics</i> , 2000 , 107, 33-9	6.3	29
289	Intrachromosomal mitotic nonallelic homologous recombination is the major molecular mechanism underlying type-2 NF1 deletions. <i>Human Mutation</i> , 2010 , 31, 1163-73	4.7	28
288	De novo splice site mutation in the antithrombin III (AT3) gene causing recurrent venous thrombosis: demonstration of exon skipping by ectopic transcript analysis. <i>Genomics</i> , 1992 , 13, 1359-61	4.3	28
287	Late-onset homozygous protein C deficiency. <i>Lancet, The,</i> 1991 , 338, 575-6	40	28
286	Test Pricing and Reimbursement in Genomic Medicine: Towards a General Strategy. <i>Public Health Genomics</i> , 2016 , 19, 352-363	1.9	28
285	Trans-species polymorphism in humans and the great apes is generally maintained by balancing selection that modulates the host immune response. <i>Human Genomics</i> , 2015 , 9, 21	6.8	27
284	Non-B DNA-forming sequences and WRN deficiency independently increase the frequency of base substitution in human cells. <i>Journal of Biological Chemistry</i> , 2011 , 286, 10017-26	5.4	27
283	Detection of two Alu insertions in the CFTR gene. Journal of Cystic Fibrosis, 2008, 7, 37-43	4.1	27
282	Human gene mutation in pathology and evolution. Journal of Inherited Metabolic Disease, 2002, 25, 157-	8524	27
281	Disruption of a binding site for hepatocyte nuclear factor 1 in the protein C gene promoter is associated with hereditary thrombophilia. <i>Human Molecular Genetics</i> , 1994 , 3, 2147-52	5.6	27

280	Genome-wide analysis of copy number variation identifies candidate gene loci associated with the progression of non-alcoholic fatty liver disease. <i>PLoS ONE</i> , 2014 , 9, e95604	3.7	27	
279	New clinical and molecular insights on Barth syndrome. <i>Orphanet Journal of Rare Diseases</i> , 2013 , 8, 27	4.2	26	
278	Investigating DNA-, RNA-, and protein-based features as a means to discriminate pathogenic synonymous variants. <i>Human Mutation</i> , 2017 , 38, 1336-1347	4.7	26	
277	A meta-analysis of single base-pair substitutions in translational termination codons ('nonstop' mutations) that cause human inherited disease. <i>Human Genomics</i> , 2011 , 5, 241-64	6.8	26	
276	Monozygotic twins discordant for neurofibromatosis type 1 due to a postzygotic NF1 gene mutation. <i>Human Mutation</i> , 2011 , 32, E2134-47	4.7	26	
275	Detection of missense mutations by single-strand conformational polymorphism (SSCP) analysis in five dysfunctional variants of coagulation factor VII. <i>Human Molecular Genetics</i> , 1993 , 2, 1355-9	5.6	26	
274	Diagnosis of genetic disease using recombinant DNA. Second edition. <i>Human Genetics</i> , 1989 , 83, 307-34	6.3	26	
273	Blacklisting variants common in private cohorts but not in public databases optimizes human exome analysis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 950-959	11.5	26	
272	Mutational signatures and mutable motifs in cancer genomes. <i>Briefings in Bioinformatics</i> , 2018 , 19, 1085	5-131401	25	
271	S-CAP extends pathogenicity prediction to genetic variants that affect RNA splicing. <i>Nature Genetics</i> , 2019 , 51, 755-763	36.3	25	
270	Impact of human pathogenic micro-insertions and micro-deletions on post-transcriptional regulation. <i>Human Molecular Genetics</i> , 2014 , 23, 3024-34	5.6	25	
269	Molecular genetic analysis of the PLP1 gene in 38 families with PLP1-related disorders: identification and functional characterization of 11 novel PLP1 mutations. <i>Orphanet Journal of Rare Diseases</i> , 2011 , 6, 40	4.2	25	
268	Cruciform-forming inverted repeats appear to have mediated many of the microinversions that distinguish the human and chimpanzee genomes. <i>Chromosome Research</i> , 2009 , 17, 469-83	4.4	25	
267	Genetic variation at the growth hormone (GH1) and growth hormone receptor (GHR) loci as a risk factor for hypertension and stroke. <i>Human Genetics</i> , 2006 , 119, 527-40	6.3	25	
266	RegSNPs-intron: a computational framework for predicting pathogenic impact of intronic single nucleotide variants. <i>Genome Biology</i> , 2019 , 20, 254	18.3	25	
265	Proteins linked to autosomal dominant and autosomal recessive disorders harbor characteristic rare missense mutation distribution patterns. <i>Human Molecular Genetics</i> , 2015 , 24, 5995-6002	5.6	24	
264	Transient hypermutability, chromothripsis and replication-based mechanisms in the generation of concurrent clustered mutations. <i>Mutation Research - Reviews in Mutation Research</i> , 2012 , 750, 52-9	7	24	
263	Guanine holes are prominent targets for mutation in cancer and inherited disease. <i>PLoS Genetics</i> , 2013 , 9, e1003816	6	24	

262	Exploring the potential relevance of human-specific genes to complex disease. <i>Human Genomics</i> , 2011 , 5, 99-107	6.8	24
261	Gross Rearrangement Breakpoint Database (GRaBD). Human Mutation, 2004, 23, 219-21	4.7	24
260	Extensive disruption of protein interactions by genetic variants across the allele frequency spectrum in human populations. <i>Nature Communications</i> , 2019 , 10, 4141	17.4	23
259	The emergence of the mitochondrial genome as a partial regulator of nuclear function is providing new insights into the genetic mechanisms underlying age-related complex disease. <i>Human Genetics</i> , 2014 , 133, 435-58	6.3	23
258	Characterization of the nonallelic homologous recombination hotspot PRS3 associated with type-3 NF1 deletions. <i>Human Mutation</i> , 2012 , 33, 372-83	4.7	23
257	Genomic Medicine Without Borders: Which Strategies Should Developing Countries Employ to Invest in Precision Medicine? A New "Fast-Second Winner" Strategy. <i>OMICS A Journal of Integrative Biology</i> , 2017 , 21, 647-657	3.8	23
256	When loss-of-function is loss of function: assessing mutational signatures and impact of loss-of-function genetic variants. <i>Bioinformatics</i> , 2017 , 33, i389-i398	7.2	23
255	Identification and molecular characterization of six novel mutations in the UDP-N-acetylglucosamine-1-phosphotransferase gamma subunit (GNPTG) gene in patients with mucolipidosis III gamma. <i>Human Mutation</i> , 2009 , 30, 978-84	4.7	23
254	Interlocus gene conversion events introduce deleterious mutations into at least 1% of human genes associated with inherited disease. <i>Genome Research</i> , 2012 , 22, 429-35	9.7	23
253	Co-inheritance of a novel deletion of the entire SPINK1 gene with a CFTR missense mutation (L997F) in a family with chronic pancreatitis. <i>Molecular Genetics and Metabolism</i> , 2007 , 92, 168-75	3.7	23
252	p53 mutations, benzo[a]pyrene and lung cancer. <i>Mutagenesis</i> , 1998 , 13, 319-20	2.8	23
251	Regulatory mutations and human genetic disease. <i>Annals of Medicine</i> , 1992 , 24, 427-37	1.5	23
250	Characterization of 26 deletion CNVs reveals the frequent occurrence of micro-mutations within the breakpoint-flanking regions and frequent repair of double-strand breaks by templated insertions derived from remote genomic regions. <i>Human Genetics</i> , 2015 , 134, 589-603	6.3	22
249	Clarifying the clinical relevance of SPINK1 intronic variants in chronic pancreatitis. <i>Gut</i> , 2016 , 65, 884-6	19.2	22
248	Patterns and mutational signatures of tandem base substitutions causing human inherited disease. <i>Human Mutation</i> , 2013 , 34, 1119-30	4.7	22
247	Exploring the somatic NF1 mutational spectrum associated with NF1 cutaneous neurofibromas. <i>European Journal of Human Genetics</i> , 2012 , 20, 411-9	5.3	22
246	Three different pathological lesions in the NF1 gene originating de novo in a family with neurofibromatosis type 1. <i>Human Genetics</i> , 2003 , 112, 12-7	6.3	22
245	Molecular characterisation of the pericentric inversion that distinguishes human chromosome 5 from the homologous chimpanzee chromosome. <i>Human Genetics</i> , 2005 , 117, 168-76	6.3	22

244	DNA polymerase Imutational signatures are found in a variety of different types of cancer. <i>Cell Cycle</i> , 2018 , 17, 348-355	4.7	22
243	Bridging genomics research between developed and developing countries: the Genomic Medicine Alliance. <i>Personalized Medicine</i> , 2014 , 11, 615-623	2.2	21
242	Identification of recurrent type-2 NF1 microdeletions reveals a mitotic nonallelic homologous recombination hotspot underlying a human genomic disorder. <i>Human Mutation</i> , 2012 , 33, 1599-609	4.7	21
241	Assessment of the potential pathogenicity of missense mutations identified in the GTPase-activating protein (GAP)-related domain of the neurofibromatosis type-1 (NF1) gene. <i>Human Mutation</i> , 2012 , 33, 1687-96	4.7	20
240	Critical appraisal of the private genetic and pharmacogenomic testing environment in Greece. <i>Personalized Medicine</i> , 2011 , 8, 413-420	2.2	20
239	Prediction of functional regulatory SNPs in monogenic and complex disease. <i>Human Mutation</i> , 2011 , 32, 1183-90	4.7	20
238	Copy number variations in the NF1 gene region are infrequent and do not predispose to recurrent type-1 deletions. <i>European Journal of Human Genetics</i> , 2008 , 16, 572-80	5.3	20
237	Origin of the prevalent SFTPB indel g.1549C > GAA (121ins2) mutation causing surfactant protein B (SP-B) deficiency. <i>American Journal of Medical Genetics, Part A</i> , 2006 , 140, 62-9	2.5	20
236	An integrative approach to predicting the functional effects of small indels in non-coding regions of the human genome. <i>BMC Bioinformatics</i> , 2017 , 18, 442	3.6	19
235	Tissue-specific differences in the proportion of mosaic large NF1 deletions are suggestive of a selective growth advantage of hematopoietic del(+/-) stem cells. <i>Human Mutation</i> , 2012 , 33, 541-50	4.7	19
234	Integrating next-generation sequencing into the diagnostic testing of inherited cancer predisposition. <i>Clinical Genetics</i> , 2013 , 83, 2-6	4	19
233	A novel Alu-mediated 61-kb deletion of the von Willebrand factor (VWF) gene whose breakpoints co-locate with putative matrix attachment regions. <i>Blood Cells, Molecules, and Diseases</i> , 2006 , 36, 385-9	1 ^{2.1}	19
232	Molecular diagnosis of facioscapulohumeral muscular dystrophy. <i>Expert Review of Molecular Diagnostics</i> , 2002 , 2, 160-71	3.8	19
231	Promoter shuffling has occurred during the evolution of the vertebrate growth hormone gene. <i>Gene</i> , 2000 , 254, 9-18	3.8	19
230	Elucidation of the complex structure and origin of the human trypsinogen locus triplication. <i>Human Molecular Genetics</i> , 2009 , 18, 3605-14	5.6	18
229	Ascertainment and critical assessment of the views of the general public and healthcare professionals on nutrigenomics in Greece. <i>Personalized Medicine</i> , 2012 , 9, 201-210	2.2	18
228	Diversity of cystathionine beta-synthase haplotypes bearing the most common homocystinuria mutation c.833T>C: a possible role for gene conversion. <i>Human Mutation</i> , 2007 , 28, 255-64	4.7	18
227	Single base-pair substitutions in pathology and evolution: two sides to the same coin. <i>Human Mutation</i> , 1996 , 8, 23-31	4.7	18

226	Identification of cancer predisposition variants in apparently healthy individuals using a next-generation sequencing-based family genomics approach. <i>Human Genomics</i> , 2015 , 9, 12	6.8	17
225	Dissecting the clinical phenotype associated with mosaic type-2 NF1 microdeletions. <i>Neurogenetics</i> , 2012 , 13, 229-36	3	17
224	Revealing the human mutome. Clinical Genetics, 2010, 78, 310-20	4	17
223	Air pollution and mutations in the germline: are humans at risk?. <i>Human Genetics</i> , 2009 , 125, 119-30	6.3	17
222	Characterization of the human lineage-specific pericentric inversion that distinguishes human chromosome 1 from the homologous chromosomes of the great apes. <i>Human Genetics</i> , 2006 , 120, 126	- 38 ·3	17
221	Population differences in the frequency of the factor V Leiden variant among people with clinically symptomatic protein C deficiency. <i>Journal of Medical Genetics</i> , 1995 , 32, 543-5	5.8	17
220	Elucidating common structural features of human pathogenic variations using large-scale atomic-resolution protein networks. <i>Human Mutation</i> , 2014 , 35, 585-93	4.7	16
219	Molecular heterogeneity in malignant peripheral nerve sheath tumors associated with neurofibromatosis type 1. <i>Human Genomics</i> , 2012 , 6, 18	6.8	16
218	A legal framework for biobanking: the German experience. <i>European Journal of Human Genetics</i> , 2007 , 15, 528-32	5.3	16
217	The chimpanzee-specific pericentric inversions that distinguish humans and chimpanzees have identical breakpoints in Pan troglodytes and Pan paniscus. <i>Genomics</i> , 2006 , 87, 39-45	4.3	16
216	Identification of an intronic regulatory element in the human protein C (PROC) gene. <i>Human Genetics</i> , 2000 , 107, 458-65	6.3	16
215	Heritable pattern of oxidized DNA base repair coincides with pre-targeting of repair complexes to open chromatin. <i>Nucleic Acids Research</i> , 2021 , 49, 221-243	20.1	16
214	regSNPs-splicing: a tool for prioritizing synonymous single-nucleotide substitution. <i>Human Genetics</i> , 2017 , 136, 1279-1289	6.3	15
213	Pathogenicity and functional impact of non-frameshifting insertion/deletion variation in the human genome. <i>PLoS Computational Biology</i> , 2019 , 15, e1007112	5	15
212	polyadenylation signal variants cause syndromic microphthalmia. <i>Journal of Medical Genetics</i> , 2019 , 56, 444-452	5.8	15
211	Evaluation of copy number variation and gene expression in neurofibromatosis type-1-associated malignant peripheral nerve sheath tumours. <i>Human Genomics</i> , 2015 , 9, 3	6.8	15
210	Genomic variants in the FTO gene are associated with sporadic amyotrophic lateral sclerosis in Greek patients. <i>Human Genomics</i> , 2017 , 11, 30	6.8	15
209	A Role for Non-B DNA Forming Sequences in Mediating Microlesions Causing Human Inherited Disease. <i>Human Mutation</i> , 2016 , 37, 65-73	4.7	15

208	Application of Economic Evaluation to Assess Feasibility for Reimbursement of Genomic Testing as Part of Personalized Medicine Interventions. <i>Frontiers in Pharmacology</i> , 2019 , 10, 830	5.6	15	
207	Improving the in silico assessment of pathogenicity for compensated variants. <i>European Journal of Human Genetics</i> , 2016 , 25, 2-7	5.3	15	
206	Analysis of crossover breakpoints yields new insights into the nature of the gene conversion events associated with large NF1 deletions mediated by nonallelic homologous recombination. <i>Human Mutation</i> , 2014 , 35, 215-26	4.7	15	
205	Assessing the pathological relevance of SPINK1 promoter variants. <i>European Journal of Human Genetics</i> , 2011 , 19, 1066-73	5.3	15	
204	Legal and ethical consequences of international biobanking from a national perspective: the German BMB-EUCoop project. <i>European Journal of Human Genetics</i> , 2010 , 18, 522-5	5.3	15	
203	Molecular genetic approaches to the analysis and diagnosis of human inherited disease: an overview. <i>Annals of Medicine</i> , 1992 , 24, 29-42	1.5	15	
202	The distribution of the dinucleotide CpG and cytosine methylation in the vitellogenin gene family. <i>Journal of Molecular Evolution</i> , 1987 , 25, 107-15	3.1	15	
201	No significant enrichment of rare functionally defective CPA1 variants in a large Chinese idiopathic chronic pancreatitis cohort. <i>Human Mutation</i> , 2017 , 38, 959-963	4.7	14	
200	Clinical heterogeneity of mitochondrial NAD kinase deficiency caused by a NADK2 start loss variant. <i>American Journal of Medical Genetics, Part A</i> , 2018 , 176, 692-698	2.5	14	
199	The somatic autosomal mutation matrix in cancer genomes. <i>Human Genetics</i> , 2015 , 134, 851-64	6.3	14	
198	Technological advances in DNA sequence enrichment and sequencing for germline genetic diagnosis. <i>Expert Review of Molecular Diagnostics</i> , 2012 , 12, 159-73	3.8	14	
197	Growth hormone (GH1) gene variation and the growth hormone receptor (GHR) exon 3 deletion polymorphism in a West-African population. <i>Molecular and Cellular Endocrinology</i> , 2008 , 296, 18-25	4.4	14	
196	Polymorphic micro-inversions contribute to the genomic variability of humans and chimpanzees. <i>Human Genetics</i> , 2006 , 119, 103-12	6.3	14	
195	Disentangling the perturbational effects of amino acid substitutions in the DNA-binding domain of p53. <i>Human Genetics</i> , 1999 , 104, 15-22	6.3	14	
194	Molecular reconstruction and homology modelling of the catalytic domain of the common ancestor of the haemostatic vitamin-K-dependent serine proteinases. <i>Human Genetics</i> , 1996 , 98, 351-70	6.3	14	
193	Protein C London 1: recurrent mutation at Arg 169 (CGGTGG) in the protein C gene causing thrombosis. <i>Nucleic Acids Research</i> , 1989 , 17, 10513	20.1	14	
192	MutationTaster2021. Nucleic Acids Research, 2021, 49, W446-W451	20.1	14	
191	First estimate of the scale of canonical 5' splice site GT>GC variants capable of generating wild-type transcripts. <i>Human Mutation</i> , 2019 , 40, 1856-1873	4.7	13	

190	The Rise and Rise of Exome Sequencing. Public Health Genomics, 2016, 19, 315-324	1.9	13
189	Fine mapping of meiotic NAHR-associated crossovers causing large NF1 deletions. <i>Human Molecular Genetics</i> , 2016 , 25, 484-96	5.6	13
188	Structure-based kernels for the prediction of catalytic residues and their involvement in human inherited disease. <i>Bioinformatics</i> , 2010 , 26, 1975-82	7.2	13
187	Enigmatic in vivo iduronate-2-sulfatase (IDS) mutant transcript correction to wild-type in Hunter syndrome. <i>Human Mutation</i> , 2010 , 31, E1261-85	4.7	13
186	Resolution of a mispaired secondary structure intermediate could account for a novel micro-insertion/deletion (387 insA/del 8 bp) in the PYGM gene causing McArdle's disease. <i>Clinical Genetics</i> , 2001 , 59, 48-51	4	13
185	Determinants of the factor IX mutational spectrum in haemophilia B: an analysis of missense mutations using a multi-domain molecular model of the activated protein. <i>Human Genetics</i> , 1994 , 94, 594-608	6.3	13
184	A list of cloned human DNA sequences. <i>Human Genetics</i> , 1983 , 65, 19-26	6.3	13
183	A list of cloned human DNA sequencessupplement. <i>Human Genetics</i> , 1984 , 67, 111-4	6.3	13
182	Identification of a functional enhancer variant within the chronic pancreatitis-associated SPINK1 c.101A>G (p.Asn34Ser)-containing haplotype. <i>Human Mutation</i> , 2017 , 38, 1014-1024	4.7	12
181	Regulatory Single-Nucleotide Variant Predictor Increases Predictive Performance of Functional Regulatory Variants. <i>Human Mutation</i> , 2016 , 37, 1137-1143	4.7	12
180	Phenotypic and genotypic overlap between mosaic NF2 and schwannomatosis in patients with multiple non-intradermal schwannomas. <i>Human Genetics</i> , 2018 , 137, 543-552	6.3	12
179	A new and more accurate estimate of the rate of concurrent tandem-base substitution mutations in the human germline: ~0.4% of the single-nucleotide substitution mutation rate. <i>Human Mutation</i> , 2014 , 35, 392-4	4.7	12
178	An emerging role for microRNAs in NF1 tumorigenesis. Human Genomics, 2012, 6, 23	6.8	12
177	Gene conversion in human genetic disease. <i>Genes</i> , 2010 , 1, 550-63	4.2	12
176	A gene conversion hotspot in the human growth hormone (GH1) gene promoter. <i>Human Mutation</i> , 2009 , 30, 239-47	4.7	12
175	Triangulation of the human, chimpanzee, and Neanderthal genome sequences identifies potentially compensated mutations. <i>Human Mutation</i> , 2010 , 31, 1286-93	4.7	12
174	Mechanism of Alu integration into the human genome. <i>Genomic Medicine</i> , 2007 , 1, 9-17		12
173	Single-strand conformation polymorphism (SSCP) analysis of exon 11 of the CFTR gene reliably detects more than one third of non-delta F508 mutations in German cystic fibrosis patients. <i>Human Genetics</i> , 1992 , 88, 283-7	6.3	12

172	The pattern of DNA methylation in the delta-crystallin genes in transdifferentiating neural retina cultures. <i>Differentiation</i> , 1983 , 24, 33-8	3.5	12
171	AMELIE accelerates Mendelian patient diagnosis directly from the primary literature		12
170	AVADA: toward automated pathogenic variant evidence retrieval directly from the full-text literature. <i>Genetics in Medicine</i> , 2020 , 22, 362-370	8.1	12
169	Mis-splicing of the GALNS gene resulting from deep intronic mutations as a cause of Morquio a disease. <i>BMC Medical Genetics</i> , 2018 , 19, 183	2.1	12
168	Severe infantile isolated exocrine pancreatic insufficiency caused by the complete functional loss of the SPINK1 gene. <i>Human Mutation</i> , 2017 , 38, 1660-1665	4.7	11
167	AMELIE speeds Mendelian diagnosis by matching patient phenotype and genotype to primary literature. <i>Science Translational Medicine</i> , 2020 , 12,	17.5	11
166	Local DNA dynamics shape mutational patterns of mononucleotide repeats in human genomes. <i>Nucleic Acids Research</i> , 2015 , 43, 5065-80	20.1	11
165	How to distinguish genetically between an alleged father and his monozygotic twin: a thought experiment. <i>Forensic Science International: Genetics</i> , 2012 , 6, e129-30	4.3	11
164	Restoration of the normal splicing pattern of the PLP1 gene by means of an antisense oligonucleotide directed against an exonic mutation. <i>PLoS ONE</i> , 2013 , 8, e73633	3.7	11
163	Delineating the Hemostaseome as an aid to individualize the analysis of the hereditary basis of thrombotic and bleeding disorders. <i>Human Genetics</i> , 2011 , 130, 149-66	6.3	11
162	Comparative analysis of germline and somatic microlesion mutational spectra in 17 human tumor suppressor genes. <i>Human Mutation</i> , 2011 , 32, 620-32	4.7	11
161	Prenatal exclusion of severe factor VII deficiency. <i>Journal of Pediatric Hematology/Oncology</i> , 2003 , 25, 418-20	1.2	11
160	Hypermethylation of the neurofibromatosis type 1 (NF1) gene promoter is not a common event in the inactivation of the NF1 gene in NF1-specific tumours. <i>Human Genetics</i> , 2000 , 107, 33-39	6.3	11
159	The molecular genetics of familial venous thrombosis. <i>Best Practice and Research: Clinical Haematology</i> , 1994 , 7, 637-74		11
158	The molecular genetics of familial venous thrombosis. <i>Blood Reviews</i> , 1991 , 5, 55-70	11.1	11
157	The Loss and Gain of Functional Amino Acid Residues Is a Common Mechanism Causing Human Inherited Disease. <i>PLoS Computational Biology</i> , 2016 , 12, e1005091	5	11
156	Developmental Gene Expression Differences between Humans and Mammalian Models. <i>Cell Reports</i> , 2020 , 33, 108308	10.6	11
155	Ultra-deep amplicon sequencing indicates absence of low-grade mosaicism with normal cells in patients with type-1 NF1 deletions. <i>Human Genetics</i> , 2019 , 138, 73-81	6.3	11

154	In silico discrimination of single nucleotide polymorphisms and pathological mutations in human gene promoter regions by means of local DNA sequence context and regularity. <i>In Silico Biology</i> , 2006 , 6, 23-34	2	11
153	Biological and functional relevance of CASP predictions. <i>Proteins: Structure, Function and Bioinformatics</i> , 2018 , 86 Suppl 1, 374-386	4.2	10
152	ExonImpact: Prioritizing Pathogenic Alternative Splicing Events. <i>Human Mutation</i> , 2017 , 38, 16-24	4.7	10
151	Research and clinical applications of cancer genome sequencing. <i>Current Opinion in Obstetrics and Gynecology</i> , 2013 , 25, 3-10	2.4	10
150	Delineation of the clinical phenotype associated with non-mosaic type-2 NF1 deletions: two case reports. <i>Journal of Medical Case Reports</i> , 2011 , 5, 577	1.2	10
149	regSNPs: a strategy for prioritizing regulatory single nucleotide substitutions. <i>Bioinformatics</i> , 2012 , 28, 1879-86	7.2	10
148	Molecular analysis of the 5'-flanking region of the neurofibromatosis type 1 (NF1) gene: identification of five sequence variants. <i>Clinical Genetics</i> , 2000 , 57, 221-4	4	10
147	Molecular genetic analysis of severe protein C deficiency. <i>Human Genetics</i> , 2000 , 106, 646-653	6.3	10
146	Screening for mutations in the antithrombin III gene causing recurrent venous thrombosis by single-strand conformation polymorphism analysis. <i>Human Mutation</i> , 1993 , 2, 324-6	4.7	10
145	Nucleotide Weight Matrices Reveal Ubiquitous Mutational Footprints of AID/APOBEC Deaminases in Human Cancer Genomes. <i>Cancers</i> , 2019 , 11,	6.6	9
144	Common homozygosity for predicted loss-of-function variants reveals both redundant and advantageous effects of dispensable human genes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 13626-13636	11.5	9
143	RegulationSpotter: annotation and interpretation of extratranscriptic DNA variants. <i>Nucleic Acids Research</i> , 2019 , 47, W106-W113	20.1	9
142	Chromosomal speciation of humans and chimpanzees revisited: studies of DNA divergence within inverted regions. <i>Cytogenetic and Genome Research</i> , 2007 , 116, 53-60	1.9	9
141	NF1 Microdeletions and Their Underlying Mutational Mechanisms 2012 , 187-209		9
140	iRegNet3D: three-dimensional integrated regulatory network for the genomic analysis of coding and non-coding disease mutations. <i>Genome Biology</i> , 2017 , 18, 10	18.3	8
139	SeqTailor: a user-friendly webserver for the extraction of DNA or protein sequences from next-generation sequencing data. <i>Nucleic Acids Research</i> , 2019 , 47, W623-W631	20.1	8
138	Pronounced maternal parent-of-origin bias for type-1 NF1 microdeletions. <i>Human Genetics</i> , 2018 , 137, 365-373	6.3	8
137	Identification of compound heterozygous variants in the noncoding RNU4ATAC gene in a Chinese family with two successive foetuses with severe microcephaly. <i>Human Genomics</i> , 2018 , 12, 3	6.8	8

(2002-2013)

136	Small deletions within the RHD coding sequence: a report of two novel mutational events and a survey of the underlying pathophysiologic mechanisms. <i>Transfusion</i> , 2013 , 53, 206-10	2.9	8
135	Complex Multiple-Nucleotide Substitution Mutations Causing Human Inherited Disease Reveal Novel Insights into the Action of Translesion Synthesis DNA Polymerases. <i>Human Mutation</i> , 2015 , 36, 1034-8	4.7	8
134	Genetics in genomic era. Genetics Research International, 2015, 2015, 364960	O	8
133	Concurrent nucleotide substitution mutations in the human genome are characterized by a significantly decreased transition/transversion ratio. <i>Human Mutation</i> , 2015 , 36, 333-41	4.7	8
132	A probabilistic model to predict clinical phenotypic traits from genome sequencing. <i>PLoS Computational Biology</i> , 2014 , 10, e1003825	5	8
131	The mutational demography of protein C deficiency. <i>Human Genetics</i> , 1995 , 96, 142-6	6.3	8
130	Core database. <i>Nature</i> , 1995 , 374, 402	50.4	8
129	Regional localization and characterization of a DNA segment on the long arm of chromosome 21. <i>Human Genetics</i> , 1987 , 75, 129-35	6.3	8
128	Consideration of the haplotype diversity at nonallelic homologous recombination hotspots improves the precision of rearrangement breakpoint identification. <i>Human Mutation</i> , 2017 , 38, 1711-17	·227	8
127	In vitro and in silico evidence against a significant effect of the c.194G>A variant on pre-mRNA splicing. <i>Gut</i> , 2017 , 66, 2195-2196	19.2	7
126	copy number variants and promoter polymorphisms in pancreatitis: common pathogenetic mechanism, different genetic effects. <i>Gut</i> , 2018 , 67, 592-593	19.2	7
125	IMHOTEP-a composite score integrating popular tools for predicting the functional consequences of non-synonymous sequence variants. <i>Nucleic Acids Research</i> , 2017 , 45, e13	20.1	7
124	Extreme clustering of type-1 NF1 deletion breakpoints co-locating with G-quadruplex forming sequences. <i>Human Genetics</i> , 2018 , 137, 511-520	6.3	7
123	An isolated case of lissencephaly caused by the insertion of a mitochondrial genome-derived DNA sequence into the 5' untranslated region of the PAFAH1B1 (LIS1) gene. <i>Human Genomics</i> , 2010 , 4, 384-9	9 5 .8	7
122	Extended runs of homozygosity at 17q11.2: an association with type-2 NF1 deletions?. <i>Human Mutation</i> , 2010 , 31, 325-34	4.7	7
121	Variation of site-specific methylation patterns in the factor VIII (F8C) gene in human sperm DNA. <i>Human Genetics</i> , 1998 , 103, 228-33	6.3	7
120	Functional analysis of polymorphic variation within the promoter and 5' untranslated region of the neurofibromatosis type 1 (NF1) gene. <i>American Journal of Medical Genetics Part A</i> , 2004 , 131, 227-31		7
119	The evolution of the vertebrate beta-globin gene promoter. <i>Evolution; International Journal of Organic Evolution</i> , 2002 , 56, 224-32	3.8	7

118	Protein C deficiency and thromboembolism: recurrent mutation at Arg 306 in the protein C gene. <i>Human Genetics</i> , 1992 , 88, 586-8	6.3	7
117	Molecular genetic analysis of a novel form of haemophilia A characterized by the variable expression of factor VIII. <i>Thrombosis Research</i> , 1990 , 59, 871-7	8.2	7
116	Human gene cloning: the storm before the lull?. <i>Nature</i> , 1986 , 322, 119	50.4	7
115	Non-coding RNA ANRIL and the number of plexiform neurofibromas in patients with NF1 microdeletions. <i>BMC Medical Genetics</i> , 2012 , 13, 98	2.1	6
114	Utilization of a cryptic noncanonical donor splice site in the KRT14 gene causes a mild form of epidermolysis bullosa simplex. <i>British Journal of Dermatology</i> , 2006 , 155, 201-3	4	6
113	Prothrombin cleavage by human vascular smooth muscle cells: a potential alternative pathway to the coagulation cascade. <i>Journal of Cellular Biochemistry</i> , 1995 , 59, 514-28	4.7	6
112	A comprehensive list of cloned human DNA sequences. <i>Nucleic Acids Research</i> , 1990 , 18 Suppl, 2413-547	720.1	6
111	Identification and functional characterization of a novel heterozygous missense variant in the LPL associated with recurrent hypertriglyceridemia-induced acute pancreatitis in pregnancy. <i>Molecular Genetics & Medicine</i> , 2020 , 8, e1048	2.3	5
110	Mining clinical attributes of genomic variants through assisted literature curation in Egas. <i>Database: the Journal of Biological Databases and Curation</i> , 2016 , 2016,	5	5
109	Digging deeper into the intronic sequences of the SPINK1 gene. <i>Gut</i> , 2016 , 65, 1055-6	19.2	5
108	CDG: An Online Server for Detecting Biologically Closest Disease-Causing Genes and its Application to Primary Immunodeficiency. <i>Frontiers in Immunology</i> , 2018 , 9, 1340	8.4	5
107	Identification of large NF1 duplications reciprocal to NAHR-mediated type-1 NF1 deletions. <i>Human Mutation</i> , 2014 , 35, 1469-75	4.7	5
106	In silico prioritization and further functional characterization of SPINK1 intronic variants. <i>Human Genomics</i> , 2017 , 11, 7	6.8	5
105	Disclosing the Hidden Structure and Underlying Mutational Mechanism of a Novel Type of Duplication CNV Responsible for Hereditary Multiple Osteochondromas. <i>Human Mutation</i> , 2015 , 36, 758-63	4.7	5
104	Human Gene Mutation: Mechanisms and Consequences 2010 , 319-363		5
103	Homology modelling of the catalytic domain of early mammalian protein C: evolution of structural features. <i>Human Genetics</i> , 1997 , 101, 37-42	6.3	5
102	Searching for potential microRNA-binding site mutations amongst known disease-associated 3' UTR variants. <i>Genomic Medicine</i> , 2007 , 1, 29-33		5
101	A single base-pair deletion in the protein C gene causing recurrent thromboembolism. <i>Thrombosis Research</i> , 1991 , 61, 335-40	8.2	5

(2001-2020)

100	The Experimentally Obtained Functional Impact Assessments of 5' Splice Site GT'GC Variants Differ Markedly from Those Predicted. <i>Current Genomics</i> , 2020 , 21, 56-66	2.6	5
99	Neuroprotectants attenuate hypobaric hypoxia-induced brain injuries in cynomolgus monkeys. <i>Zoological Research</i> , 2020 , 41, 3-19	3.4	5
98	Ectopic Transcript Analysis Indicates that Allelic Exclusion is an Important Cause of Type I Protein C Deficiency in Patients with Nonsense and Frameshift Mutations in the PROC Gene. <i>Thrombosis and Haemostasis</i> , 1996 , 75, 870-876	7	5
97	Role of the Common Haplotype in Alcoholic and Non-Alcoholic Chronic Pancreatitis: Meta- and Re-Analyses. <i>Genes</i> , 2020 , 11,	4.2	5
96	Toward a clinical diagnostic pipeline for SPINK1 intronic variants. <i>Human Genomics</i> , 2019 , 13, 8	6.8	5
95	Intra-individual plasticity of the TAZ gene leading to different heritable mutations in siblings with Barth syndrome. <i>European Journal of Human Genetics</i> , 2015 , 23, 1708-12	5.3	4
94	5' splice site GC>GT and GT>GC variants differ markedly in terms of their functionality and pathogenicity. <i>Human Mutation</i> , 2020 , 41, 1358-1364	4.7	4
93	Quantitative mapping of genetic similarity in human heritable diseases by shared mutations. <i>Human Mutation</i> , 2018 , 39, 292-301	4.7	4
92	Screening in silico predicted remotely acting NF1 gene regulatory elements for mutations in patients with neurofibromatosis type 1. <i>Human Genomics</i> , 2013 , 7, 18	6.8	4
91	DNA structure matters. <i>Genome Medicine</i> , 2013 , 5, 51	14.4	4
91	DNA structure matters. <i>Genome Medicine</i> , 2013 , 5, 51 Analysis of the Impact of Known SPINK1 Missense Variants on Pre-mRNA Splicing and/or mRNA Stability in a Full-Length Gene Assay. <i>Genes</i> , 2017 , 8,	14.4	4
	Analysis of the Impact of Known SPINK1 Missense Variants on Pre-mRNA Splicing and/or mRNA	14.4 4.2 6.8	
90	Analysis of the Impact of Known SPINK1 Missense Variants on Pre-mRNA Splicing and/or mRNA Stability in a Full-Length Gene Assay. <i>Genes</i> , 2017 , 8, 'Sifting the significance from the data' - the impact of high-throughput genomic technologies on		
90 89	Analysis of the Impact of Known SPINK1 Missense Variants on Pre-mRNA Splicing and/or mRNA Stability in a Full-Length Gene Assay. <i>Genes</i> , 2017 , 8, 'Sifting the significance from the data' - the impact of high-throughput genomic technologies on human genetics and health care. <i>Human Genomics</i> , 2012 , 6, 11 The Germline Mutational Spectrum in Neurofibromatosis Type 1 and Genotype Phenotype		4
90 89 88	Analysis of the Impact of Known SPINK1 Missense Variants on Pre-mRNA Splicing and/or mRNA Stability in a Full-Length Gene Assay. <i>Genes</i> , 2017 , 8, 'Sifting the significance from the data' - the impact of high-throughput genomic technologies on human genetics and health care. <i>Human Genomics</i> , 2012 , 6, 11 The Germline Mutational Spectrum in Neurofibromatosis Type 1 and Genotype Phenotype Correlations 2012 , 115-134	6.8	4 4
90 89 88 87	Analysis of the Impact of Known SPINK1 Missense Variants on Pre-mRNA Splicing and/or mRNA Stability in a Full-Length Gene Assay. <i>Genes</i> , 2017 , 8, 'Sifting the significance from the data' - the impact of high-throughput genomic technologies on human genetics and health care. <i>Human Genomics</i> , 2012 , 6, 11 The Germline Mutational Spectrum in Neurofibromatosis Type 1 and Genotype Phenotype Correlations 2012 , 115-134 Lionizing lyonization 50 Jears on. <i>Human Genetics</i> , 2011 , 130, 167-8 Do inherited disease genes have distinguishing functional characteristics?. <i>Genetic Testing and</i>	6.8	4 4
90 89 88 87 86	Analysis of the Impact of Known SPINK1 Missense Variants on Pre-mRNA Splicing and/or mRNA Stability in a Full-Length Gene Assay. <i>Genes</i> , 2017 , 8, 'Sifting the significance from the data' - the impact of high-throughput genomic technologies on human genetics and health care. <i>Human Genomics</i> , 2012 , 6, 11 The Germline Mutational Spectrum in Neurofibromatosis Type 1 and GenotypePhenotype Correlations 2012 , 115-134 Lionizing lyonization 50 years on. <i>Human Genetics</i> , 2011 , 130, 167-8 Do inherited disease genes have distinguishing functional characteristics?. <i>Genetic Testing and Molecular Biomarkers</i> , 2010 , 14, 289-91 Two sisters with Rett syndrome and non-identical paternally-derived microdeletions in the MECP2	6.8	4 4 4

82	A novel missense mutation in the antithrombin III gene (Ser349Pro) causing recurrent venous thrombosis. <i>Human Genetics</i> , 1992 , 88, 707-8	6.3	4
81	S-CAP extends clinical-grade pathogenicity prediction to genetic variants that affect RNA splicing		4
80	Verifying nomenclature of DNA variants in submitted manuscripts: Guidance for journals. <i>Human Mutation</i> , 2021 , 42, 3-7	4.7	4
79	A platform for curated products from novel open reading frames prompts reinterpretation of disease variants. <i>Genome Research</i> , 2021 ,	9.7	4
78	Discovery and Functional Annotation of PRSS1 Promoter Variants in Chronic Pancreatitis. <i>Human Mutation</i> , 2016 , 37, 1149-1152	4.7	3
77	Analysis of Features from Protein-protein Hetero-complex Structures to Predict Protein Interaction Interfaces Using Machine Learning. <i>Procedia Technology</i> , 2013 , 10, 62-66		3
76	Cross-comparison of the genome sequences from human, chimpanzee, Neanderthal and a Denisovan hominin identifies novel potentially compensated mutations. <i>Human Genomics</i> , 2011 , 5, 453-	- 8 4 ⁸	3
75	Local DNA sequence determinants of FUT2 copy number variation. <i>Transfusion</i> , 2011 , 51, 1359-61	2.9	3
74	Prospects for the automated extraction of mutation data from the scientific literature. <i>Human Genomics</i> , 2010 , 5, 1-4	6.8	3
73	Is the NIH policy for sharing GWAS data running the risk of being counterproductive?. <i>Investigative Genetics</i> , 2010 , 1, 3		3
72	Comparative analysis of copy number variation in primate genomes. <i>Cytogenetic and Genome Research</i> , 2008 , 123, 288-96	1.9	3
71	Compound heterozygosity for two novel mutations (1203insG/Y1456X) in the von Willebrand factor gene causing type 3 von Willebrand disease. <i>Haemophilia</i> , 2007 , 13, 645-8	3.3	3
7º	Detection of NF1 mutations utilizing the protein truncation test (PTT). <i>Methods in Molecular Biology</i> , 2003 , 217, 315-27	1.4	3
69	Mspl RFLP in the human heparin cofactor II (HCF2) gene. <i>Nucleic Acids Research</i> , 1990 , 18, 1664	20.1	3
68	Molecular genetic approaches to the analysis of human ophthalmic disease. <i>Eye</i> , 1987 , 1 (Pt 6), 699-721	l 4.4	3
67	Mutations Causing Complex Disease May under Certain Circumstances Be Protective in an Epidemiological Sense. <i>PLoS ONE</i> , 2015 , 10, e0132150	3.7	3
66	Atypical Microdeletions: Challenges and Opportunities for Genotype/Phenotype Correlations in Patients with Large Deletions. <i>Genes</i> , 2021 , 12,	4.2	3
65	The Somatic Mutational Spectrum of the NF1 Gene 2012 , 211-233		3

64	Pathogenic and likely pathogenic variants in at least five genes account for approximately 3% of mild isolated nonsyndromic thrombocytopenia. <i>Transfusion</i> , 2020 , 60, 2419-2431	2.9	3
63	NGS mismapping confounds the clinical interpretation of the p.Ala16Val (c.47C>T) variant in chronic pancreatitis. <i>Gut</i> , 2021 ,	19.2	3
62	The genetic structure of the Turkish population reveals high levels of variation and admixture. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	3
61	Classification of NF1 microdeletions and its importance for establishing genotype/phenotype correlations in patients with NF1 microdeletions. <i>Human Genetics</i> , 2021 , 140, 1635-1649	6.3	3
60	Gene Conversion in Evolution and Disease		3
59	Compound Heterozygosity for Novel Truncating Variants in the Gene as the Cause of Polyhydramnios in Two Successive Fetuses. <i>Frontiers in Genetics</i> , 2019 , 10, 835	4.5	2
58	and Variants in 22 Chinese Families With Multiple Osteochondromas: Seven New Variants and Potentiation of Preimplantation Genetic Testing and Prenatal Diagnosis. <i>Frontiers in Genetics</i> , 2020 , 11, 607838	4.5	2
57	Gene-environment interaction between APOA5 £.553G>T and pregnancy in hypertriglyceridemia-induced acute pancreatitis. <i>Journal of Clinical Lipidology</i> , 2020 , 14, 498-506	4.9	2
56	Population-specific differences in gene conversion patterns between human SUZ12 and SUZ12P are indicative of the dynamic nature of interparalog gene conversion. <i>Human Genetics</i> , 2014 , 133, 383-4	101 ³	2
55	Chromosomal distribution of disease genes in the human genome. <i>Genetic Testing and Molecular Biomarkers</i> , 2010 , 14, 441-6	1.6	2
54	Structure-based kernels for the prediction of catalytic residues and their involvement in human inherited disease. <i>BMC Bioinformatics</i> , 2010 , 11, O4	3.6	2
53	Copy number variation and disease. Preface. Cytogenetic and Genome Research, 2008, 123, 5-6	1.9	2
52	Mutations in Human Genetic Disease 2006 ,		2
51	A comprehensive list of cloned human DNA sequences1990 update. <i>Nucleic Acids Research</i> , 1991 , 19 Suppl, 2111-26	20.1	2
50	Prenatal exclusion of haemophilia A and carrier testing by direct detection of a disease lesion. <i>Prenatal Diagnosis</i> , 1992 , 12, 861-6	3.2	2
49	Analysis of missense variants in the human genome reveals widespread gene-specific clustering and improves prediction of pathogenicity <i>American Journal of Human Genetics</i> , 2022 ,	11	2
48	PIVOTAL: Prioritizing variants of uncertain significance with spatial genomic patterns in the 3D proteor	ne	2
47	Developmental gene expression differences between humans and mammalian models		2

46	Common polymorphic OTC variants can act as genetic modifiers of enzymatic activity. <i>Human Mutation</i> , 2021 , 42, 978-989	4.7	2
45	Scale and Scope of Gene-Alcohol Interactions in Chronic Pancreatitis: A Systematic Review. <i>Genes</i> , 2021 , 12,	4.2	2
44	The sequencing and interpretation of the genome obtained from a Serbian individual. <i>PLoS ONE</i> , 2018 , 13, e0208901	3.7	2
43	Human Gene Mutation in Inherited Disease 2013 , 1-48		1
42	Sequential data selection for predicting the pathogenic effects of sequence variation 2015,		1
41	Local sequence determinants of two in-frame triplet deletion/duplication hotspots in the RHD/RHCE genes. <i>Human Genomics</i> , 2012 , 6, 8	6.8	1
40	The Sequencing of the Rhesus Macaque Genome and its Comparison with the Genome Sequences of Human and Chimpanzee 2008 ,		1
39	Neurofibromatosis Type 1 2004 , 285-310		1
38	THE EVOLUTION OF THE VERTEBRATE EGLOBIN GENE PROMOTER. <i>Evolution; International Journal of Organic Evolution</i> , 2002 , 56, 224	3.8	1
37	A novel missense mutation (Thr176>Ile) at the putative hinge of the neo N-terminus of activated protein C. <i>Human Genetics</i> , 1995 , 95, 447-50	6.3	1
36	Carrier detection in haemophilia A by direct analysis of factor VIII gene lesions. <i>Human Genetics</i> , 1991 , 87, 99-100	6.3	1
35	Identification of discriminative gene-level and protein-level features associated with pathogenic gain-of-function and loss-of-function variants. <i>American Journal of Human Genetics</i> , 2021 , 108, 2301-231	$ \frac{1}{8} $	1
34	RegSNPs-Intron: A computational framework for prioritizing Intronic Single Nucleotide Variants in Human Genetic Disease		1
33	5ßplice site GC>GT variants differ from GT>GC variants in terms of their functionality and pathogenicity	,	1
32	AVADA Enables Automated Genetic Variant Curation Directly from the Full Text Literature		1
31	Genetic analysis of the STIM1 gene in chronic pancreatitis		1
30	AMELIE 2 speeds up Mendelian diagnosis by matching patient phenotype & genotype to primary literatu	ıre	1
29	Trypsinogen Genes: Insights into Molecular Evolution from the Study of Pathogenic Mutations		1

28	Digenic Inheritance and Gene-Environment Interaction in a Patient With Hypertriglyceridemia and Acute Pancreatitis. <i>Frontiers in Genetics</i> , 2021 , 12, 640859	4.5	1
27	DNA Methylation, Deamination, and Translesion Synthesis Combine to Generate Footprint Mutations in Cancer Driver Genes in B-Cell Derived Lymphomas and Other Cancers. <i>Frontiers in Genetics</i> , 2021 , 12, 671866	4.5	1
26	Compensatory epistasis explored by molecular dynamics simulations. <i>Human Genetics</i> , 2021 , 140, 1329-	16. 4 2	1
25	Most unambiguous loss-of-function mutations are unlikely to predispose to chronic pancreatitis. <i>Gut</i> , 2020 , 69, 785-786	19.2	1
24	The Genomic Medicine Alliance: A Global Effort to Facilitate the Introduction of Genomics into Healthcare in Developing Nations 2018 , 173-188		1
23	Splicing Outcomes of 5' Splice Site GT>GC Variants That Generate Wild-Type Transcripts Differ Significantly Between Full-Length and Minigene Splicing Assays. <i>Frontiers in Genetics</i> , 2021 , 12, 701652	4.5	1
22	De Novo Mutations in Human Inherited Disease1-7		1
21	Trypsinogen (PRSS1 and PRSS2) gene dosage correlates with pancreatitis risk across genetic and transgenic studies: a systematic review and re-analysis <i>Human Genetics</i> , 2022 , 1	6.3	О
20	Non-B DNA Structure and Mutations Causing Human Genetic Disease1-15		O
19	Human Genomic Variants and Inherited Disease: Molecular Mechanisms and Clinical Consequences 2019 , 125-200		O
18	The reversion variant (p.Arg90Leu) at the evolutionarily adaptive p.Arg90 site in CELA3B predisposes to chronic pancreatitis. <i>Human Mutation</i> , 2021 , 42, 385-391	4.7	O
17	Prioritization of schizophrenia risk genes from GWAS results by integrating multi-omics data. <i>Translational Psychiatry</i> , 2021 , 11, 175	8.6	О
16	No Convincing Evidence to Support a Bimodal Age of Onset in Idiopathic Chronic Pancreatitis. <i>Clinical Gastroenterology and Hepatology</i> , 2021 ,	6.9	O
15	Challenges in the diagnosis of neurofibromatosis type 1 (NF1) in young children facilitated by means of revised diagnostic criteria including genetic testing for pathogenic NF1 gene variants Human Genetics, 2021, 141, 177	6.3	Ο
14	The Evolution of High-Throughput Sequencing Technologies: From Sanger to Single-Molecule Sequencing 2013 , 1-30		
13	Next-generation sequencing in cancer research & diagnostics 2013 , 20-40		
12	In vitro recapitulation of the site-specific editing (to wild-type) of mutant IDS mRNA transcripts, and the characterization of IDS protein translated from the edited mRNAs. <i>Human Mutation</i> , 2017 , 38, 849-862	4.7	
11	Remotely acting SMCHD1 gene regulatory elements: in silico prediction and identification of potential regulatory variants in patients with FSHD. <i>Human Genomics</i> , 2015 , 9, 25	6.8	

Molecular cytogenetic characterization of two independent karyotypic anomalies in a patient with 10 severe mental retardation and juvenile idiopathic arthritis. Genomic Medicine, 2007, 1, 65-73 [14] Analysis of promoter mutations causing human genetic disease. Methods in Molecular Genetics, **1996**, 8, 261-277 The Molecular Genetics of Platelet Membrane Proteins and their Inherited Disorders. Platelets, 8 3.6 **1991**, 2, 59-67 Structure and function in the human genome 2020, 1-41 Mapping the human genome 2020, 43-68 6 Application of PCR to the Detection and Analysis of Point Mutations in the Human Factor VIII Gene 1991, 23-31 Sequencing the Human Genome: Novel Insights into Its Structure and Function1-9 Pathogenetics of Chronic Pancreatitis 2017, 63-77 Somatic Copy Number Alterations: Gene and Protein Expression Correlates in NF1-Associated Malignant Peripheral Nerve Sheath Tumors 2012, 405-428 Human growth hormone I gene expression is influenced in a complex haplotype-dependent fashion by polymorphic variation in both the proximal promoter and the locus control region. Journal of 1.6 Pediatric Endocrinology and Metabolism, 2002, 15 Suppl 5, 1429